巧用Google Fire简化Python命令行程序

2023-11-28 02:08

本文主要是介绍巧用Google Fire简化Python命令行程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hello World

要介绍Fire是什么,看一个简单的例子就明白了

# calc.py
import fireclass Calculator(object):"""A simple calculator class."""def double(self, number):return 2 * numberif __name__ == '__main__':fire.Fire(Calculator)

接下来我们进入bash来执行上面编写的脚本

> python calc.py double 10
20
> python calc.py double --number=16
32

上面是官方的示例代码,有了fire,编写Python的命令行程序就变得非常简单,我们无需再去处理繁琐的命令行参数解析了。接下来我们仿照HelloWorld,编写一个圆周率和阶乘计算的命令行脚本。

实战

import math
import fireclass Math(object):def pi(self, n):s = 0.0for i in range(n):s += 1.0/(i+1)/(i+1)return math.sqrt(6*s)def fact(self, n):s = 1for i in range(n):s *= (i+1)return sif __name__ == '__main__':fire.Fire(Math)

接下来我们运行一下

>  python maths.py pi 10000
3.14149716395
>  python maths.py pi 100000
3.14158310433
>  python maths.py pi 1000000
3.14159169866
>  python maths.py fact 10
3628800
>  python maths.py fact 15
1307674368000
>  python maths.py fact 20
2432902008176640000

Cool,真的非常方便!fire对当前对象结构进行了暴露,将结构信息映射到shell命令行参数上。fire其实有多种暴露模式,接下来我们逐个来看fire都有哪些暴露模式。

暴露模块

fire如果不传递任何参数就可以直接暴露当前模块结构,我们对上面的例子做一下改造,去掉类信息

import math
import firedef pi(n):s = 0.0for i in range(n):s += 1.0/(i+1)/(i+1)return math.sqrt(6*s)def fact(n):s = 1for i in range(n):s *= (i+1)return sif __name__ == '__main__':fire.Fire()

注意Fire函数调用没有任何参数,运行一下

>  python maths.py fact 20
2432902008176640000
>  python maths.py pi 1000000
3.14159169866

暴露函数

fire还可以传递一个函数对象来暴露单个函数,可以让我们在命令行参数上省掉函数名称

import math
import firedef pi(n):s = 0.0for i in range(n):s += 1.0/(i+1)/(i+1)return math.sqrt(6*s)if __name__ == '__main__':fire.Fire(pi)

如果暴露函数那就只能暴露一个函数,如果暴露了两个,那就只有后面一个生效,运行一下

>  python maths.py 1000
3.14063805621

暴露字典

fire可以直接暴露一个模块,将当前模块的所有函数全部暴露,函数名和第一个参数名一致。我们也可以不用暴露整个模块的所有函数,使用字典暴露法就可以选择性地对模块的某些函数进行暴露,顺便还可以替换暴露出来的函数名称。

import math
import firedef pi(n):s = 0.0for i in range(n):s += 1.0/(i+1)/(i+1)return math.sqrt(6*s)def fact(n):s = 1for i in range(n):s *= (i+1)return sif __name__ == '__main__':fire.Fire({"pi[n]": pi})

我们只暴露了pi函数,并且把名字还换掉了,运行一下,看效果

>  python maths.py pi[n] 1000
3.14063805621

如果我们使用原函数名称,就会看到fire列出的友好的报错信息

>  python maths.py pi 1000
Fire trace:
1. Initial component
2. ('Cannot find target in dict:', 'pi', {'pi[n]': <function pi at 0x10a062c08>})
Type:        dict
String form: {'pi[n]': <function pi at 0x10a062c08>}
Length:      1
Usage:       maths.pymaths.py pi[n]

暴露对象

import math
import fireclass Maths(object):def pi(self, n):s = 0.0for i in range(n):s += 1.0/(i+1)/(i+1)return math.sqrt(6*s)def fact(self, n):s = 1for i in range(n):s *= (i+1)return sif __name__ == '__main__':fire.Fire(Maths())

运行

>  python maths.py pi 1000
3.14063805621
>  python maths.py fact 20
2432902008176640000

暴露类

这个我们在上面的实战环节已经演示过了,这里就不在重复粘贴

类 vs 对象

通过上面的例子,我们发现暴露类和暴露对象似乎没有任何区别,那到底该选哪种比较优雅呢?这个要看类的构造器有没有参数,如果是不带参数的构造器,那么类和对象的暴露是没有区别的,但是如果类的构造器有参数,那就不一样了,下面我们改造一下Maths类,增加一个放大系数。

import math
import fireclass Maths(object):def __init__(self, coeff):self.coeff = coeffdef pi(self, n):s = 0.0for i in range(n):s += 1.0/(i+1)/(i+1)return self.coeff * math.sqrt(6*s)def fact(self, n):s = 1for i in range(n):s *= (i+1)return self.coeff * sif __name__ == '__main__':fire.Fire(Maths)

因为Maths的构造器带有参数,所有运行命令行时需要指定构造器参数值

> python maths.py pi 1000 --coeff=2
6.28127611241

如果不指定参数的值,运行时就会报错

> python maths.py pi 1000
Fire trace:
1. Initial component
2. ('The function received no value for the required argument:', 'coeff')
Type:        type
String form: <class '__main__.Maths'>
File:        ~/source/rollado/maths.py
Line:        5
Usage:       maths.py COEFFmaths.py --coeff COEFF

如果改成暴露对象,那么放大系数就是在代码里写死的,无法在命令行进行参数定制了。这就是暴露对象和暴露类的差别,似乎暴露类在功能上更强大一些。

暴露属性

上面的所有例子我们最终暴露的都是函数,要么是模块里的函数,要么是类里的函数。但实际上fire还可以暴露属性,比如我们可以将上面的coeff参数通过命令行进行输出。

> python maths.py coeff --coeff=2
2
> python maths.py coeff --coeff=3
3

再来一个更加简单的例子

# example.py
import fire
english = 'Hello World'
spanish = 'Hola Mundo'
fire.Fire()

运行

$ python example.py english
Hello World
$ python example.py spanish
Hola Mundo

原理

640?wx_fmt=png

命令行中的参数顺序和代码内部对象的树状层次结构呈现一一对应关系。如果fire不带参数暴露了当前的模块,那么第一个参数就应该是这个模块内部的函数名、类名或者是变量名。如果第一个参数是函数,那么接下来的参数就是函数的参数。如果第一个参数是类,那么接下来的参数可能是这个类实例内部的方法或者字段。如果第一个参数是变量名,后面没有参数的话,就直接显示这个变量。如果后面还有参数,那么就把这个变量看成一个对象,然后继续使用后续参数来深入解析这个对象。

在Python里面所有的变量都是对象,包括普通的整数、字符串、浮点数、布尔值等。理论上可以一直将对象结构递归下去,形成一个复杂的链式调用。

链式暴露

接下来我们验证这个理论,尝试一下复杂的链式暴露。

import fireclass Chain(object):def __init__(self):self.value = 1def incr(self):print "incr", self.valueself.value += 1return selfdef decr(self):print "decr", self.valueself.value -= 1return selfdef get(self):return self.valueif __name__ == '__main__':fire.Fire(Chain)

运行一下

> python chains.py incr incr incr decr decr get
incr 1
incr 2
incr 3
decr 4
decr 3
2

Cool! 我们通过在每个方法里面方法self对象自身来实现了漂亮的链式调用效果。

接下来我们尝试对内置字符串对象进行解构

# xyz.py
import firevalue = "hello"if __name__ == '__main__':fire.Fire()

字符串有upper和lower方法,我们反复使用upper和lower,然后观察结果

> python xyz.py value
hello
> python xyz.py value upper
HELLO
> python xyz.py value upper lower
Traceback (most recent call last):File "xyz.py", line 7, in <module>fire.Fire()File "/Users/pyloque/source/pys/.py/lib/python2.7/site-packages/fire/core.py", line 127, in Firecomponent_trace = _Fire(component, args, context, name)File "/Users/pyloque/source/pys/.py/lib/python2.7/site-packages/fire/core.py", line 366, in _Firecomponent, remaining_args)File "/Users/pyloque/source/pys/.py/lib/python2.7/site-packages/fire/core.py", line 542, in _CallCallableresult = fn(*varargs, **kwargs)
TypeError: upper() takes no arguments (1 given)

很不幸,内置的字符串对象似乎不支持链式调用,第一个upper倒是执行成功了。不过fire提供了一个特殊的符号用来解决这个问题。

> python xyz.py value upper - lower
hello
> python xyz.py value upper - lower - upper
HELLO
> python xyz.py value upper - lower - upper - lower
hello

减号用来表示参数的结束,这样后续的参数就不会被当成函数的参数来映射了。

总结

有了Google Fire这样一个小巧的类库,我们就可以从复杂的命令行参数分析中解脱出来了。我们常说写代码要漂亮优雅,没有好的类库,这种理想也不是非常容易实现的。如果没有fire,你有本事试试把复杂的命令行参数解析代码写优雅了给老师我看看。

640?wx_fmt=jpeg

高级文章,关注公众号「码洞」

这篇关于巧用Google Fire简化Python命令行程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/428892

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu