SSF-CNN:空间光谱融合的卷积光谱图像超分网络

2023-11-27 19:01

本文主要是介绍SSF-CNN:空间光谱融合的卷积光谱图像超分网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SSF-CNN: SPATIAL AND SPECTRAL FUSION WITH CNN FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION

文章目录

  • SSF-CNN: SPATIAL AND SPECTRAL FUSION WITH CNN FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    • 简介
    • 解决问题
    • 网络框架
    • 代码实现
    • 训练部分
    • 运行结果

简介

​ 本文提出了一种利用空间和光谱进行高光谱融合图像超分辨率的新型CNN架构,首先是对高光谱图像进行双三次插值,使其空间分辨率大小和多光谱一致,然后进行concat操作。使用类似于SRCNN的网络框架对融合超分的图像进行优化,最后输出高分辨率高光谱超分图像。

​ 对于PDCon,也就是引入了部分密集连接,将输入concat到每一个卷积层后面。
Hyperspectral-Image-Super-Resolution-Benchmark——光谱图像超分基准-CSDN博客
Paper: IEEE
Code:https://github.com/miraclefan777/SSFCNN

2023-11-25_16-06-09

解决问题

  1. 传统方法通过基于优化的方法恢复 HR-HS 图像的质量在很大程度上取决于预定义的约束。此外,由于约束项数量较多,优化过程通常涉及较高的计算成本。
  2. 执行HSI SR的一个直接想法是直接应用这样的网络来放大LR-HS图像的空间维度或HR-RGB图像的光谱维度,我们称之为Spatial-CNN和Spectral-CNN,这两种单图像方法忽略了两种图像特有的信息互补优势。

网络框架

  1. 原始的SRCNN是将图片映射到Ycbcr空间,并只使用其中的 Y 分量作为输入来预测 HR Y 图像,该论文则是将图片的通道信息以及空间信息整个进行输入
  2. 原始SRCNN卷积核大小第1,2修改为3*3,增加上下文信息,同时为了避免高维数据(padding为same,保持和原有特征图大小一致)

代码实现

class SSFCNNnet(nn.Module):def __init__(self, num_spectral=31, scale_factor=8, pdconv=False):super(SSFCNNnet, self).__init__()self.scale_factor = scale_factorself.pdconv = pdconvself.Upsample = nn.Upsample(mode='bicubic', scale_factor=self.scale_factor)self.conv1 = nn.Conv2d(num_spectral + 3, 64, kernel_size=3, padding="same")if pdconv:self.conv2 = nn.Conv2d(64 + 3, 32, kernel_size=3, padding="same")self.conv3 = nn.Conv2d(32 + 3, num_spectral, kernel_size=5, padding="same")else:self.conv2 = nn.Conv2d(64, 32, kernel_size=3, padding="same")self.conv3 = nn.Conv2d(32, num_spectral, kernel_size=5, padding="same")self.relu = nn.ReLU(inplace=True)def forward(self, lr_hs, hr_ms):""":param lr_hs:LR-HSI低分辨率的高光谱图像:param hr_ms:高分辨率的多光谱图像:return:"""# 对LR-HSI低分辨率图像进行上采样,让其分辨率更高lr_hs_up = self.Upsample(lr_hs)# 将上采样后的LR-HSI低分辨率图像与高分辨率的多光谱图像进行拼接x = torch.cat((lr_hs_up, hr_ms), dim=1)x = self.relu(self.conv1(x))if self.pdconv:x = torch.cat((x, hr_ms), dim=1)x = self.relu(self.conv2(x))x = torch.cat((x, hr_ms), dim=1)else:x = self.relu(self.conv2(x))out = self.conv3(x)return out

如果需要使用密集连接,只需要在初始化网络模型时,传参pdconv=True

训练部分

未提供自定义dataset类,根据自己的dateset进行参数的修改即可。

import argparse
from calculate_metrics import Loss_SAM, Loss_RMSE, Loss_PSNR
from models.SSFCNNnet import SSFCNNnet
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from train_dataloader import CAVEHSIDATAprocess
from utils import create_F, fspecial,AverageMeter
import os
import copy
import torch
import torch.nn as nnif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--model', type=str, default="SSFCNNnet")parser.add_argument('--train-file', type=str, required=True)parser.add_argument('--eval-file', type=str, required=True)parser.add_argument('--outputs-dir', type=str, required=True)parser.add_argument('--scale', type=int, default=2)parser.add_argument('--lr', type=float, default=1e-4)parser.add_argument('--batch-size', type=int, default=32)parser.add_argument('--num-workers', type=int, default=0)parser.add_argument('--num-epochs', type=int, default=400)parser.add_argument('--seed', type=int, default=123)args = parser.parse_args()assert args.model in ['SSFCNNnet', 'PDcon_SSF']outputs_dir = os.path.join(args.outputs_dir, '{}'.format(args.model))if not os.path.exists(outputs_dir):os.makedirs(outputs_dir)device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')torch.manual_seed(args.seed)# 训练参数# loss_func = nn.L1Loss(reduction='mean').cuda()criterion = nn.MSELoss()#################数据集处理#################R = create_F()PSF = fspecial('gaussian', 8, 3)downsample_factor = 8training_size = 64stride = 32stride1 = 32train_dataset = CAVEHSIDATAprocess(args.train_file, R, training_size, stride, downsample_factor, PSF, 20)train_dataloader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True)eval_dataset = CAVEHSIDATAprocess(args.eval_file, R, training_size, stride, downsample_factor, PSF, 12)eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1)#################数据集处理################## 模型if args.model == 'SSFCNNnet':model = SSFCNNnet().cuda()else:model = SSFCNNnet(pdconv=True).cuda()best_weights = copy.deepcopy(model.state_dict())best_epoch = 0best_psnr = 0.0# 模型初始化for m in model.modules():if isinstance(m, (nn.Conv2d, nn.Linear)):nn.init.xavier_uniform_(m.weight)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)optimizer = torch.optim.Adam([{'params': model.conv1.parameters()},{'params': model.conv2.parameters()},{'params': model.conv3.parameters(), 'lr': args.lr * 0.1}], lr=args.lr)start_epoch = 0for epoch in range(start_epoch, args.num_epochs):model.train()epoch_losses = AverageMeter()with tqdm(total=(len(train_dataset) - len(train_dataset) % args.batch_size)) as t:t.set_description('epoch:{}/{}'.format(epoch, args.num_epochs - 1))for data in train_dataloader:label, lr_hs, hr_ms = datalabel = label.to(device)lr_hs = lr_hs.to(device)hr_ms = hr_ms.to(device)lr = optimizer.param_groups[0]['lr']pred = model(hr_ms, lr_hs)loss = criterion(pred, label)epoch_losses.update(loss.item(), len(label))optimizer.zero_grad()loss.backward()optimizer.step()t.set_postfix(loss='{:.6f}'.format(epoch_losses.avg), lr='{0:1.8f}'.format(lr))t.update(len(label))# torch.save(model.state_dict(), os.path.join(outputs_dir, 'epoch_{}.pth'.format(epoch)))if epoch % 5 == 0:model.eval()val_loss = AverageMeter()SAM = Loss_SAM()RMSE = Loss_RMSE()PSNR = Loss_PSNR()sam = AverageMeter()rmse = AverageMeter()psnr = AverageMeter()for data in eval_dataloader:label, lr_hs, hr_ms = datalr_hs = lr_hs.to(device)hr_ms = hr_ms.to(device)label = label.cpu().numpy()with torch.no_grad():preds = model(hr_ms, lr_hs).cpu().numpy()sam.update(SAM(preds, label), len(label))rmse.update(RMSE(preds, label), len(label))psnr.update(PSNR(preds, label), len(label))if psnr.avg > best_psnr:best_epoch = epochbest_psnr = psnr.avgbest_weights = copy.deepcopy(model.state_dict())print('eval psnr: {:.2f}  RMSE: {:.2f}  SAM: {:.2f} '.format(psnr.avg, rmse.avg, sam.avg))

运行结果

在这里插入图片描述

这篇关于SSF-CNN:空间光谱融合的卷积光谱图像超分网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/428320

相关文章

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查