StyleGAN 使用指南:生成更逼真的图片

2023-11-27 16:30

本文主要是介绍StyleGAN 使用指南:生成更逼真的图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

StyleGAN 使用指南:生成更逼真的图片

    • 提出背景:特征纠缠
    • StyleGAN-v1 网络结构
      • 映射网络 Mapping network f
      • 生成网络 Synthesis network g
      • 训练技巧
        • 样式混合 mixing regularization
        • 截断 Truncation Trick
      • 评估指标
        • 路径长度 Perceptual path length
        • 解耦:让映射空间实现线性可分性
    • StyleGAN-v2
    • StyleGAN-v3
    • StyleGAN-XL
    • StyleGAN-T
    • 项目代码

 


提出背景:特征纠缠

传统的生成网络中,有一个问题存在,就是特征纠缠。

比如你想要给人脸模型增加一头卷发,但当你调整与发型相关的参数时,你可能会发现模型生成的人脸同时也改变了肤色、眼睛间距或者表情。这是因为卷发的特征与其他特征在潜在空间中是纠缠的。

StyleGAN-v1 网络结构

在这里插入图片描述
分为俩部分:映射网络 Mapping network f、生成网络 Synthesis network g

映射网络 Mapping network f

  • 映射网络 Mapping network f:把 原始数据 z 转成 向量w,解决特征纠缠。

    如上图,输入z(512维),经过 8 个全连接层,得到w(512维)。

    原始数据(z向量)就像是一个复杂的信号,它包含了所有可能的图像生成因素混合在一起,这些因素包括形状、纹理、颜色和其他视觉细节。

    这个向量空间通常高度纠缠,使得直接操作单个因素变得困难,因为改变一个维度可能会影响到多个属性。

    映射网络的任务就是像解码器一样工作,它将这个复杂的、高度纠缠的信号转换成一个新的、更加有序的中间潜在空间,即风格空间,其中的每个维度尽可能地表示独立的图像特征。

    在风格空间中,向量被重新编排和优化,以便单个维度更有可能对应于图像中的单一生成因素。这允许模型生成器在生成图像时对特定的视觉属性进行精细的控制和调整,而不是一次性调整所有特征。

    如上图,向量 w 经过仿射变换 A,得到风格向量 S(style)

生成网络 Synthesis network g

  • 生成网络 Synthesis network g : 用于生成图像

    把风格向量S输入AdaIN层。

    在此前的风格迁移方法中,每个网络只能对应一个特定的风格,而且速度较慢。但是基于AdaIN,我们可以通过“自我调节”生成器的方式快速实现任意图像风格的转换。

    特征图的均值和方差包含了图像的风格信息。在AdaIN层中,通过将特征图减去自身的均值再除以方差,实现去除原有风格的效果。然后乘以新风格的方差再加上均值,实现风格转换的目的。

    A d a I N ( x i , y ) = σ ( y ) ∗ ( x i − μ ( x i ) σ ( x i ) + μ ( y ) AdaIN(x_{i}, y) = σ(y) * \frac{(x_{i} - μ(x_{i})}{ σ(x_{i}) } + μ(y) AdaIN(xi,y)=σ(y)σ(xi)(xiμ(xi)+μ(y),y 是风格, x i x_{i} xi 是第 i 层

    仿射变换过程: 1 ∗ 512 1*512 1512维向量W -> 学习仿射变换A -> 风格向量Style 2 ∗ n 2*n 2n维向量, y s , i , y b , i y_{s,i},~y_{b,i} ys,i, yb,i

    A d a I N ( x i , y ) = y s , i ∗ ( x i − μ ( x i ) σ ( x i ) + y b , i AdaIN(x_{i}, y) = y_{s,i} * \frac{(x_{i} - μ(x_{i})}{ σ(x_{i}) } + y_{b,i} AdaIN(xi,y)=ys,iσ(xi)(xiμ(xi)+yb,i

    因为AdaIN层是归一化操作(缩放 + 偏移),通道是独立的(每个通道的特征图,其归一化系数是独立计算的,不受其他通道的影响),所以每个AdaIN层都需要俩个系数,分别对应缩放、偏移。

    在AdaIN模块之前向每个通道添加一个缩放过的噪声(Noise),增加生成图像的多样性, B 表示可学习的权重系数
    在这里插入图片描述

    9 级分辨率:生成器从较低分辨率开始,通过一系列的上采样和卷积操作逐渐增加图像的分辨率。每次上采样操作将图像的分辨率乘以2。例如,从4x4到8x8,再到16x16,依此类推。

在这里插入图片描述
9级分辨率表示经过9次上采样后,影响的特征从宏观到微观。

如人脸:

  • 4 2 − 8 2 4^{2} - 8^{2} 4282 是宏观特征(人脸姿态、形状、发型特征)
  • 1 6 2 − 3 2 2 16^{2}-32^{2} 162322 是精细特征(眼睛睁闭)
  • 6 4 2 − 102 4 2 64^{2}-1024^{2} 64210242 是微观特征(眼睛、头发、皮肤的纹理、颜色特征)

修改不同分辨率的风格向量,就能修改到人脸的属性的特征。

训练技巧

样式混合 mixing regularization

样式混合:随机交换量 w 向量的部分内容,进行拼接,防止相邻特征耦合。

比如小明的脸型,配小红的头发、小明的宏观特征,配小宏的精细特征。

如果一个人的眼睛位于人脸的上部,那么鼻子很可能位于眼睛的下方。这种相关性是由于人脸的结构和几何关系所决定的。

当我们使用特征向量来表示人脸时,这种相关性可能会导致特征之间的耦合。

例如,如果我们使用一个特征向量来表示眼睛的形状和位置,另一个特征向量来表示鼻子的形状和位置,那么这两个特征向量中的部分内容可能会相互影响。

在这种情况下,如果我们想要对眼睛和鼻子进行独立的分析和处理,相邻特征之间的耦合可能会干扰我们的结果。

拼接的特征向量的每个位置的特征来自于不同的人的人脸。这样的混合可以确保在新的特征向量中,每个位置的特征来自于不同的人的人脸,从而避免了相邻特征之间的耦合。

截断 Truncation Trick

截断 Truncation Trick:解决低密度区域的生成质量问题。

低密度区域是,某些属性总体分布比例低,如长发及腰的男性。

  • 找到数据的平均点
  • 计算其他所有点,到平均点的距离
  • 对每个距离按照统一标准进行压缩

这样就能将数据点都聚拢了,但是又不会改变点与点之间的距离关系。

举个例子,有10个男性和10个女性的数据点。

只有1个男性是长发及腰的。

我们计算每个数据点到平均点的距离,并选择一个阈值为2。

根据距离,我们发现长发及腰的男性距离平均点的距离较远,超过了阈值。

们将低密度区域中的数据点(即只有1个长发及腰的男性)聚拢在一起,并移动到与平均点距离最近的位置,同时保持其他数据点之间的距离关系不变。

评估指标

路径长度 Perceptual path length

潜在向量Latent:生成器是否选择的路线,如果是最近,那就是好的潜在向量。

如下图紫线上随机采样一个点,还是狗子的图片,就是选择了最近的路线;而绿线采样是床,就绕远了。

怎么评估这个路径长度呢?

在训练过程中,我们可以选择相邻的时间节点,并计算它们生成的图像之间的路径长度,最后得这些距离的平均值。

较小的路径长度表示生成图像之间更加相似,而较大的路径长度则表示它们之间存在较大的差异。

  • t :某一时间点
  • d :空间距离
  • skerp :采样方法
  • E :平均值
解耦:让映射空间实现线性可分性

假设我们有一个人脸生成模型,可以根据输入的随机向量生成逼真的人脸图像。使用传统的生成模型,如果我们想要生成特定属性的人脸,比如男性或女性,通常需要在随机向量的某些维度上进行微调。但是这种方式不够直观,而且可能需要花费大量时间来搜索合适的向量。

而解耦的思想则可以改善这个问题。通过解耦,我们可以将生成模型的随机向量分为多个独立的部分,每个部分对应于一个特定的属性,比如年龄、性别、发色等。这样,我们可以直接在这些特定属性的部分进行调整,而不会影响其他属性。例如,如果我们想要生成一个年轻女性的人脸,我们只需要在性别和年龄属性的部分进行调整,而不需要关心其他属性。这使得我们能够更直观地控制生成的人脸属性,同时减少了搜索的时间和计算量。

总而言之,解耦的思想通过将生成模型的随机向量分为多个独立的部分,让我们能够更直观地控制生成的属性,提高了生成模型的可操作性和效率。

StyleGAN-v2

StyleGAN-v3

StyleGAN-XL

StyleGAN-T

项目代码

StyleGAN:https://github.com/NVlabs/stylegan

StyleGAN2:https://github.com/NVlabs/stylegan2

StyleGAN3:https://github.com/NVlabs/stylegan3

Stylegan-xl:https://github.com/autonomousvision/stylegan-xl

Stylegan-t:https://github.com/autonomousvision/stylegan-t

这篇关于StyleGAN 使用指南:生成更逼真的图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/428006

相关文章

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看