深度学习-DCGAN试玩

2023-11-26 16:50
文章标签 学习 深度 dcgan 试玩

本文主要是介绍深度学习-DCGAN试玩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习-DCGAN试玩

  • GAN
    • DCGAN

GAN

简单讲下GAN原理,数学公式什么的就不贴了,有兴趣可以百度,很多的,有一定数学基础的可以去研究研究,那个是GAN的理论基础。

直觉的说,GAN就是生成东西,生成的东西是基于我给定的训练集的样本的分布,即我的让我的模型去学习我样本的分布,让他们尽可能接近,然后模型就可以生成同样分布的东西,因为理论上分布是连续的,所以可以无限生成不同的东西,服从同一分布。

二次元头像就是这个道理,我们从网上获取了一堆二次元头像,其实他是服从一个分布的,只是我们不知道,所以要让GAN去学,学了后就可以从这个分布里去生成图片了。

主要训练思路就是训练2个神经网络,一个是生成器,一个鉴别器,他们两个互相对抗,互相升级,用我们的老化就是道高一尺魔高一丈,最终达到平衡的状态。

举个比较好理解的假酒的例子
在这里插入图片描述
在这里插入图片描述
造假的人(生产者)刚开始肯定会先弄点乱七八糟的东西,希望混一起喝起来能跟酒一样,然后给别人(鉴别者)喝一口,好像跟真酒差距还挺大,那我继续研究怎么造假,直到最后给别人喝起来跟真的一样,别人就觉得这个就是真的,那就说明造假很成功,也就是别人看来就是真的,和真的酒是同一个分布了。

DCGAN

DCGAN是GAN的一个变种,原理一样的,只是训练的时候网络结构不一样,更加稳定,容易训练。比如用了反卷积,用了上采样,用了BN,leakyRelu,都是为了好训练,具体的可以去百度。

贴一个mnist手写字体的生成,用的是DCGAN,思路还是清晰的。
先训练鉴别者,给真实数据打标签1,生产的数据打0,始终让鉴别者能辨别真假,
然后训练生产者,给生产的数据打1,让生产者生产出来的数据能骗过鉴别者,最终鉴别者给出1,
然后鉴别者继续训练,提供鉴别能力,然后生产者也训练,提高造假能力,就这样循环,到一定阶段鉴别者就会把生产者生产出来的东西认为是真的,因为生产者已经近似达到真实样本的分布,抽样出来的就是真的了。
在这里插入图片描述

贴下代码,keras写的,jupyter上可以跑,我根据理解注释了下:

from __future__ import print_function, divisionfrom keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adamimport matplotlib.pyplot as pltimport sysimport numpy as np(X_train, _), (_, _) = mnist.load_data()
print(X_train.shape)class DCGAN():def __init__(self):# 图片的行,列,通道,灰度就1个self.img_rows = 28self.img_cols = 28self.channels = 1self.img_shape = (self.img_rows, self.img_cols, self.channels)#输入的向量维数self.latent_dim = 100optimizer = Adam(0.0002, 0.5)# 创建鉴别者self.discriminator = self.build_discriminator()self.discriminator.compile(loss='binary_crossentropy',optimizer=optimizer,metrics=['accuracy'])# 创建生产者self.generator = self.build_generator()# 生产者的输入100维度的向量z = Input(shape=(self.latent_dim,))#输入向量输出图片img = self.generator(z)# 先训练生产者,不训练鉴别者self.discriminator.trainable = False# 鉴别者通过生产者的图片来进行鉴别valid = self.discriminator(img)# 将生产者和鉴别者模型连起来self.combined = Model(z, valid)self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)def build_generator(self):model = Sequential()model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))model.add(Reshape((7, 7, 128)))model.add(UpSampling2D())model.add(Conv2D(128, kernel_size=3, padding="same"))model.add(BatchNormalization(momentum=0.8))model.add(Activation("relu"))model.add(UpSampling2D())model.add(Conv2D(64, kernel_size=3, padding="same"))model.add(BatchNormalization(momentum=0.8))model.add(Activation("relu"))model.add(Conv2D(self.channels, kernel_size=3, padding="same"))model.add(Activation("tanh"))model.summary()noise = Input(shape=(self.latent_dim,))img = model(noise)return Model(noise, img)def build_discriminator(self):model = Sequential()model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))model.add(LeakyReLU(alpha=0.2))model.add(Dropout(0.25))model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))model.add(ZeroPadding2D(padding=((0,1),(0,1))))model.add(BatchNormalization(momentum=0.8))model.add(LeakyReLU(alpha=0.2))model.add(Dropout(0.25))model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))model.add(BatchNormalization(momentum=0.8))model.add(LeakyReLU(alpha=0.2))model.add(Dropout(0.25))model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))model.add(BatchNormalization(momentum=0.8))model.add(LeakyReLU(alpha=0.2))model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(1, activation='sigmoid'))model.summary()img = Input(shape=self.img_shape)validity = model(img)return Model(img, validity)def train(self, epochs, batch_size=128, save_interval=50):# 加载训练集, 60000个 28 x 28(X_train, _), (_, _) = mnist.load_data()# 归一化-1 到 1X_train = X_train / 127.5 - 1.#添加1维数据,图片是灰度所以是1个通道X_train = np.expand_dims(X_train, axis=3)# 给数据打标签 一半 1 一半 0valid = np.ones((batch_size, 1))fake = np.zeros((batch_size, 1))for epoch in range(epochs):# ---------------------#  训练鉴别者# ---------------------# 从0-59999里获取batch_size个随机数idx = np.random.randint(0, X_train.shape[0], batch_size)
#             print('idx:',idx.shape)#从X_train获取相应的数据 img 维度 batch_size x 28 x 28 x 1imgs = X_train[idx]
#             print('imgs:',imgs.shape)# 采样batch_size 个 latent_dim维度的噪声 batch_size x latent_dimnoise = np.random.normal(0, 1, (batch_size, self.latent_dim))
#             print('noise:',noise.shape)#生产者生产采样batch_size个图片 batch_size x 28 x 28 x 1gen_imgs = self.generator.predict(noise)
#             print('gen_imgs:',gen_imgs.shape)# 训练鉴别者,因为有2部分数据,所以都要训练,然后求平均损失,真实数据设为1 生产的数据为0d_loss_real = self.discriminator.train_on_batch(imgs, valid)d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)# ---------------------#  训练生产者# ---------------------# 训练生产者,让生产者的标签都为1g_loss = self.combined.train_on_batch(noise, valid)print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))# 每save_interval轮保存图片if epoch % save_interval == 0:self.save_imgs(epoch)def save_imgs(self, epoch):r, c = 5, 5noise = np.random.normal(0, 1, (r * c, self.latent_dim))gen_imgs = self.generator.predict(noise)# Rescale images 0 - 1gen_imgs = 0.5 * gen_imgs + 0.5fig, axs = plt.subplots(r, c)cnt = 0for i in range(r):for j in range(c):axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')axs[i,j].axis('off')cnt += 1fig.savefig("images/mnist_%d.png" % (epoch//50))plt.close()dcgan = DCGAN()
dcgan.train(epochs=4000, batch_size=32, save_interval=50)

很多GAN的keras实现集合github

好了,今天就到这里了,希望对学习理解有帮助,大神看见勿喷,仅为自己的学习理解,能力有限,请多包涵,部分图片来自网络,侵删。

这篇关于深度学习-DCGAN试玩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/426033

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.