深度学习-DCGAN试玩

2023-11-26 16:50
文章标签 学习 深度 dcgan 试玩

本文主要是介绍深度学习-DCGAN试玩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习-DCGAN试玩

  • GAN
    • DCGAN

GAN

简单讲下GAN原理,数学公式什么的就不贴了,有兴趣可以百度,很多的,有一定数学基础的可以去研究研究,那个是GAN的理论基础。

直觉的说,GAN就是生成东西,生成的东西是基于我给定的训练集的样本的分布,即我的让我的模型去学习我样本的分布,让他们尽可能接近,然后模型就可以生成同样分布的东西,因为理论上分布是连续的,所以可以无限生成不同的东西,服从同一分布。

二次元头像就是这个道理,我们从网上获取了一堆二次元头像,其实他是服从一个分布的,只是我们不知道,所以要让GAN去学,学了后就可以从这个分布里去生成图片了。

主要训练思路就是训练2个神经网络,一个是生成器,一个鉴别器,他们两个互相对抗,互相升级,用我们的老化就是道高一尺魔高一丈,最终达到平衡的状态。

举个比较好理解的假酒的例子
在这里插入图片描述
在这里插入图片描述
造假的人(生产者)刚开始肯定会先弄点乱七八糟的东西,希望混一起喝起来能跟酒一样,然后给别人(鉴别者)喝一口,好像跟真酒差距还挺大,那我继续研究怎么造假,直到最后给别人喝起来跟真的一样,别人就觉得这个就是真的,那就说明造假很成功,也就是别人看来就是真的,和真的酒是同一个分布了。

DCGAN

DCGAN是GAN的一个变种,原理一样的,只是训练的时候网络结构不一样,更加稳定,容易训练。比如用了反卷积,用了上采样,用了BN,leakyRelu,都是为了好训练,具体的可以去百度。

贴一个mnist手写字体的生成,用的是DCGAN,思路还是清晰的。
先训练鉴别者,给真实数据打标签1,生产的数据打0,始终让鉴别者能辨别真假,
然后训练生产者,给生产的数据打1,让生产者生产出来的数据能骗过鉴别者,最终鉴别者给出1,
然后鉴别者继续训练,提供鉴别能力,然后生产者也训练,提高造假能力,就这样循环,到一定阶段鉴别者就会把生产者生产出来的东西认为是真的,因为生产者已经近似达到真实样本的分布,抽样出来的就是真的了。
在这里插入图片描述

贴下代码,keras写的,jupyter上可以跑,我根据理解注释了下:

from __future__ import print_function, divisionfrom keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adamimport matplotlib.pyplot as pltimport sysimport numpy as np(X_train, _), (_, _) = mnist.load_data()
print(X_train.shape)class DCGAN():def __init__(self):# 图片的行,列,通道,灰度就1个self.img_rows = 28self.img_cols = 28self.channels = 1self.img_shape = (self.img_rows, self.img_cols, self.channels)#输入的向量维数self.latent_dim = 100optimizer = Adam(0.0002, 0.5)# 创建鉴别者self.discriminator = self.build_discriminator()self.discriminator.compile(loss='binary_crossentropy',optimizer=optimizer,metrics=['accuracy'])# 创建生产者self.generator = self.build_generator()# 生产者的输入100维度的向量z = Input(shape=(self.latent_dim,))#输入向量输出图片img = self.generator(z)# 先训练生产者,不训练鉴别者self.discriminator.trainable = False# 鉴别者通过生产者的图片来进行鉴别valid = self.discriminator(img)# 将生产者和鉴别者模型连起来self.combined = Model(z, valid)self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)def build_generator(self):model = Sequential()model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))model.add(Reshape((7, 7, 128)))model.add(UpSampling2D())model.add(Conv2D(128, kernel_size=3, padding="same"))model.add(BatchNormalization(momentum=0.8))model.add(Activation("relu"))model.add(UpSampling2D())model.add(Conv2D(64, kernel_size=3, padding="same"))model.add(BatchNormalization(momentum=0.8))model.add(Activation("relu"))model.add(Conv2D(self.channels, kernel_size=3, padding="same"))model.add(Activation("tanh"))model.summary()noise = Input(shape=(self.latent_dim,))img = model(noise)return Model(noise, img)def build_discriminator(self):model = Sequential()model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))model.add(LeakyReLU(alpha=0.2))model.add(Dropout(0.25))model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))model.add(ZeroPadding2D(padding=((0,1),(0,1))))model.add(BatchNormalization(momentum=0.8))model.add(LeakyReLU(alpha=0.2))model.add(Dropout(0.25))model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))model.add(BatchNormalization(momentum=0.8))model.add(LeakyReLU(alpha=0.2))model.add(Dropout(0.25))model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))model.add(BatchNormalization(momentum=0.8))model.add(LeakyReLU(alpha=0.2))model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(1, activation='sigmoid'))model.summary()img = Input(shape=self.img_shape)validity = model(img)return Model(img, validity)def train(self, epochs, batch_size=128, save_interval=50):# 加载训练集, 60000个 28 x 28(X_train, _), (_, _) = mnist.load_data()# 归一化-1 到 1X_train = X_train / 127.5 - 1.#添加1维数据,图片是灰度所以是1个通道X_train = np.expand_dims(X_train, axis=3)# 给数据打标签 一半 1 一半 0valid = np.ones((batch_size, 1))fake = np.zeros((batch_size, 1))for epoch in range(epochs):# ---------------------#  训练鉴别者# ---------------------# 从0-59999里获取batch_size个随机数idx = np.random.randint(0, X_train.shape[0], batch_size)
#             print('idx:',idx.shape)#从X_train获取相应的数据 img 维度 batch_size x 28 x 28 x 1imgs = X_train[idx]
#             print('imgs:',imgs.shape)# 采样batch_size 个 latent_dim维度的噪声 batch_size x latent_dimnoise = np.random.normal(0, 1, (batch_size, self.latent_dim))
#             print('noise:',noise.shape)#生产者生产采样batch_size个图片 batch_size x 28 x 28 x 1gen_imgs = self.generator.predict(noise)
#             print('gen_imgs:',gen_imgs.shape)# 训练鉴别者,因为有2部分数据,所以都要训练,然后求平均损失,真实数据设为1 生产的数据为0d_loss_real = self.discriminator.train_on_batch(imgs, valid)d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)# ---------------------#  训练生产者# ---------------------# 训练生产者,让生产者的标签都为1g_loss = self.combined.train_on_batch(noise, valid)print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))# 每save_interval轮保存图片if epoch % save_interval == 0:self.save_imgs(epoch)def save_imgs(self, epoch):r, c = 5, 5noise = np.random.normal(0, 1, (r * c, self.latent_dim))gen_imgs = self.generator.predict(noise)# Rescale images 0 - 1gen_imgs = 0.5 * gen_imgs + 0.5fig, axs = plt.subplots(r, c)cnt = 0for i in range(r):for j in range(c):axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')axs[i,j].axis('off')cnt += 1fig.savefig("images/mnist_%d.png" % (epoch//50))plt.close()dcgan = DCGAN()
dcgan.train(epochs=4000, batch_size=32, save_interval=50)

很多GAN的keras实现集合github

好了,今天就到这里了,希望对学习理解有帮助,大神看见勿喷,仅为自己的学习理解,能力有限,请多包涵,部分图片来自网络,侵删。

这篇关于深度学习-DCGAN试玩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/426033

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程