学习dangdang的分库分表扩展框架sharding-jdbc(一)

2023-11-26 12:10

本文主要是介绍学习dangdang的分库分表扩展框架sharding-jdbc(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当当开源的sharding-jdbc,官方网址:https://github.com/dangdangdotcom/sharding-jdbc
 
一、简介






好了,看了这么多的介绍,感觉还是很高大上的,注意点有:
①对JDBC API进行了原生态的分装,这是与cobar-client不一样的地方,这就是他可以支持多个第三方ORM框架的关键
②可支持=,BETWEEN,IN等操作,说明,JDBC返回结果后,sharding进行了合并操作,这里面肯定会有性能损耗
③支持分表,这也是cobar-client不支持的地方


好了,先简单的按照官方网址的demo实践一发:


先在MySQL中建2个库




分别在这2个库中运行:


CREATE TABLE IF NOT EXISTS `t_order_0` (  `order_id` INT NOT NULL,  `user_id`  INT NOT NULL,  PRIMARY KEY (`order_id`)  );  CREATE TABLE IF NOT EXISTS `t_order_item_0` (  `item_id`  INT NOT NULL,  `order_id` INT NOT NULL,  `user_id`  INT NOT NULL,  PRIMARY KEY (`item_id`)  );  CREATE TABLE IF NOT EXISTS `t_order_1` (  `order_id` INT NOT NULL,  `user_id`  INT NOT NULL,  PRIMARY KEY (`order_id`)  );  CREATE TABLE IF NOT EXISTS `t_order_item_1` (  `item_id`  INT NOT NULL,  `order_id` INT NOT NULL,  `user_id`  INT NOT NULL,  PRIMARY KEY (`item_id`)  );  



新建maven项目






ShardingJdbc

package com.study.base;import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;import javax.sql.DataSource;import org.apache.commons.dbcp.BasicDataSource;import com.dangdang.ddframe.rdb.sharding.api.ShardingDataSource;
import com.dangdang.ddframe.rdb.sharding.api.rule.BindingTableRule;
import com.dangdang.ddframe.rdb.sharding.api.rule.DataSourceRule;
import com.dangdang.ddframe.rdb.sharding.api.rule.ShardingRule;
import com.dangdang.ddframe.rdb.sharding.api.rule.TableRule;
import com.dangdang.ddframe.rdb.sharding.api.strategy.database.DatabaseShardingStrategy;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.TableShardingStrategy;public class ShardingJdbc {public static void main(String[] args) throws SQLException {//数据源Map<String, DataSource> dataSourceMap = new HashMap<>(2);dataSourceMap.put("sharding_0", createDataSource("sharding_0"));dataSourceMap.put("sharding_1", createDataSource("sharding_1"));DataSourceRule dataSourceRule = new DataSourceRule(dataSourceMap);//分表分库的表,第一个参数是逻辑表名,第二个是实际表名,第三个是实际库TableRule orderTableRule = new TableRule("t_order", Arrays.asList("t_order_0", "t_order_1"), dataSourceRule);TableRule orderItemTableRule = new TableRule("t_order_item", Arrays.asList("t_order_item_0", "t_order_item_1"), dataSourceRule);/*** DatabaseShardingStrategy 分库策略* 参数一:根据哪个字段分库* 参数二:分库路由函数* TableShardingStrategy 分表策略* 参数一:根据哪个字段分表* 参数二:分表路由函数* */ShardingRule shardingRule = new ShardingRule(dataSourceRule, Arrays.asList(orderTableRule, orderItemTableRule),Arrays.asList(new BindingTableRule(Arrays.asList(orderTableRule, orderItemTableRule))),new DatabaseShardingStrategy("user_id", new ModuloDatabaseShardingAlgorithm()),new TableShardingStrategy("order_id", new ModuloTableShardingAlgorithm()));DataSource dataSource = new ShardingDataSource(shardingRule);String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.user_id=? AND o.order_id=?";try (Connection conn = dataSource.getConnection();PreparedStatement pstmt = conn.prepareStatement(sql)) {pstmt.setInt(1, 10);pstmt.setInt(2, 1001);try (ResultSet rs = pstmt.executeQuery()) {while(rs.next()) {System.out.println(rs.getInt(1));System.out.println(rs.getInt(2));System.out.println(rs.getInt(3));}}}}/*** 创建数据源* @param dataSourceName* @return*/private static DataSource createDataSource(String dataSourceName) {BasicDataSource result = new BasicDataSource();result.setDriverClassName(com.mysql.jdbc.Driver.class.getName());result.setUrl(String.format("jdbc:mysql://localhost:3306/%s", dataSourceName));result.setUsername("root");result.setPassword("");return result;}}



Maven依赖的pom.xml


<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">  <modelVersion>4.0.0</modelVersion>  <groupId>org.study</groupId>  <artifactId>sharding-jdbc</artifactId>  <version>0.0.1-SNAPSHOT</version>  <packaging>jar</packaging>  <name>sharding-jdbc</name>  <url>http://maven.apache.org</url>  <properties>  <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>  <spring.version>3.2.5.RELEASE</spring.version>  <mybatis.version>3.2.4</mybatis.version>  </properties>  <dependencies>  <dependency>  <groupId>junit</groupId>  <artifactId>junit</artifactId>  <version>4.10</version>  </dependency>  <dependency>  <groupId>com.dangdang</groupId>  <artifactId>sharding-jdbc-core</artifactId>  <version>1.0.0</version>  </dependency>  <dependency>  <groupId>org.springframework</groupId>  <artifactId>spring-orm</artifactId>  <version>${spring.version}</version>  </dependency>  <dependency>  <groupId>commons-dbcp</groupId>  <artifactId>commons-dbcp</artifactId>  <version>1.4</version>  </dependency>  <dependency>  <groupId>org.mybatis</groupId>  <artifactId>mybatis-spring</artifactId>  <version>1.2.2</version>  </dependency>  <dependency>  <groupId>org.mybatis</groupId>  <artifactId>mybatis</artifactId>  <version>${mybatis.version}</version>  </dependency>  <dependency>  <groupId>org.springframework</groupId>  <artifactId>spring-expression</artifactId>  <version>${spring.version}</version>  </dependency>  <dependency>  <groupId>org.springframework</groupId>  <artifactId>spring-aop</artifactId>  <version>${spring.version}</version>  </dependency>  <dependency>  <groupId>org.springframework</groupId>  <artifactId>spring-beans</artifactId>  <version>${spring.version}</version>  </dependency>  <dependency>  <groupId>org.springframework</groupId>  <artifactId>spring-context</artifactId>  <version>${spring.version}</version>  </dependency>  <dependency>  <groupId>org.springframework</groupId>  <artifactId>spring-context-support</artifactId>  <version>${spring.version}</version>  </dependency>  <dependency>  <groupId>org.springframework</groupId>  <artifactId>spring-test</artifactId>  <version>${spring.version}</version>  </dependency>  <dependency>  <groupId>org.springframework</groupId>  <artifactId>spring-tx</artifactId>  <version>${spring.version}</version>  </dependency>  <dependency>  <groupId>mysql</groupId>  <artifactId>mysql-connector-java</artifactId>  <version>5.1.28</version>  </dependency>  <dependency>  <groupId>log4j</groupId>  <artifactId>log4j</artifactId>  <version>1.2.16</version>  </dependency>  <dependency>  <groupId>org.slf4j</groupId>  <artifactId>slf4j-log4j12</artifactId>  <version>1.7.5</version>  </dependency>  </dependencies>  </project>  



ModuloDatabaseShardingAlgorithm
package com.study.base;import java.util.Collection;
import java.util.LinkedHashSet;import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.database.SingleKeyDatabaseShardingAlgorithm;
import com.google.common.collect.Range;/*** * @author lyncc**/
public class ModuloDatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm<Integer>{@Overridepublic String doEqualSharding(Collection<String> availableTargetNames, ShardingValue<Integer> shardingValue) {for (String each : availableTargetNames) {if (each.endsWith(shardingValue.getValue() % 2 + "")) {return each;}}throw new IllegalArgumentException();}@Overridepublic Collection<String> doInSharding(Collection<String> availableTargetNames, ShardingValue<Integer> shardingValue) {Collection<String> result = new LinkedHashSet<>(availableTargetNames.size());for (Integer value : shardingValue.getValues()) {for (String tableName : availableTargetNames) {if (tableName.endsWith(value % 2 + "")) {result.add(tableName);}}}return result;}@Overridepublic Collection<String> doBetweenSharding(Collection<String> availableTargetNames,ShardingValue<Integer> shardingValue) {Collection<String> result = new LinkedHashSet<>(availableTargetNames.size());Range<Integer> range = (Range<Integer>) shardingValue.getValueRange();for (Integer i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {for (String each : availableTargetNames) {if (each.endsWith(i % 2 + "")) {result.add(each);}}}return result;}}

ModuloTableShardingAlgorithm.java

package com.study.base;
import java.util.Collection;
import java.util.LinkedHashSet;import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.SingleKeyTableShardingAlgorithm;
import com.google.common.collect.Range;public final class ModuloTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Integer> {/***  select * from t_order from t_order where order_id = 11 *          └── SELECT *  FROM t_order_1 WHERE order_id = 11*  select * from t_order from t_order where order_id = 44*          └── SELECT *  FROM t_order_0 WHERE order_id = 44*/public String doEqualSharding(final Collection<String> tableNames, final ShardingValue<Integer> shardingValue) {for (String each : tableNames) {if (each.endsWith(shardingValue.getValue() % 2 + "")) {return each;}}throw new IllegalArgumentException();}/***  select * from t_order from t_order where order_id in (11,44)  *          ├── SELECT *  FROM t_order_0 WHERE order_id IN (11,44) *          └── SELECT *  FROM t_order_1 WHERE order_id IN (11,44) *  select * from t_order from t_order where order_id in (11,13,15)  *          └── SELECT *  FROM t_order_1 WHERE order_id IN (11,13,15)  *  select * from t_order from t_order where order_id in (22,24,26)  *          └──SELECT *  FROM t_order_0 WHERE order_id IN (22,24,26) */public Collection<String> doInSharding(final Collection<String> tableNames, final ShardingValue<Integer> shardingValue) {Collection<String> result = new LinkedHashSet<>(tableNames.size());for (Integer value : shardingValue.getValues()) {for (String tableName : tableNames) {if (tableName.endsWith(value % 2 + "")) {result.add(tableName);}}}return result;}/***  select * from t_order from t_order where order_id between 10 and 20 *          ├── SELECT *  FROM t_order_0 WHERE order_id BETWEEN 10 AND 20 *          └── SELECT *  FROM t_order_1 WHERE order_id BETWEEN 10 AND 20 */public Collection<String> doBetweenSharding(final Collection<String> tableNames, final ShardingValue<Integer> shardingValue) {Collection<String> result = new LinkedHashSet<>(tableNames.size());Range<Integer> range = (Range<Integer>) shardingValue.getValueRange();for (Integer i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {for (String each : tableNames) {if (each.endsWith(i % 2 + "")) {result.add(each);}}}return result;}
}

log4j.xml


<?xml version="1.0" encoding="UTF-8"?>    
<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">  
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">  <!-- [控制台STDOUT] -->  <appender name="console" class="org.apache.log4j.ConsoleAppender">  <param name="encoding" value="GBK" />  <param name="target" value="System.out" />  <layout class="org.apache.log4j.PatternLayout">  <param name="ConversionPattern" value="%-5p %c{2} - %m%n" />  </layout>  </appender>  <!-- [公共Appender] -->  <appender name="DEFAULT-APPENDER" class="org.apache.log4j.DailyRollingFileAppender">  <param name="File" value="${webapp.root}/logs/common-default.log" />  <param name="Append" value="true" />  <param name="encoding" value="GBK" />  <param name="DatePattern" value="'.'yyyy-MM-dd'.log'" />  <layout class="org.apache.log4j.PatternLayout">  <param name="ConversionPattern" value="%d %-5p %c{2} - %m%n" />  </layout>  </appender>  <!-- [错误日志APPENDER] -->  <appender name="ERROR-APPENDER" class="org.apache.log4j.DailyRollingFileAppender">  <param name="File" value="${webapp.root}/logs/common-error.log" />  <param name="Append" value="true" />  <param name="encoding" value="GBK" />  <param name="threshold" value="error" />  <param name="DatePattern" value="'.'yyyy-MM-dd'.log'" />  <layout class="org.apache.log4j.PatternLayout">  <param name="ConversionPattern" value="%d %-5p %c{2} - %m%n" />  </layout>  </appender>  <!-- [组件日志APPENDER] -->  <appender name="COMPONENT-APPENDER"  
class="org.apache.log4j.DailyRollingFileAppender">  <param name="File" value="${webapp.root}/logs/logistics-component.log" />  <param name="Append" value="true" />  <param name="encoding" value="GBK" />  <param name="DatePattern" value="'.'yyyy-MM-dd'.log'" />  <layout class="org.apache.log4j.PatternLayout">  <param name="ConversionPattern" value="%d %-5p %c{2} - %m%n" />  </layout>  </appender>  <!-- [组件日志] -->  <logger name="LOGISTICS-COMPONENT">  <level value="${loggingLevel}" />  <appender-ref ref="COMPONENT-APPENDER" />  <appender-ref ref="ERROR-APPENDER" />  </logger>  <!-- Root Logger -->  <root>  <level value="${rootLevel}"></level>  <appender-ref ref="DEFAULT-APPENDER" />  <appender-ref ref="ERROR-APPENDER" />  <appender-ref ref="console" /> <appender-ref ref="COMPONENT-APPENDER" /> </root>  
</log4j:configuration>  



好了,按照官方教程说明:





我们现在user_id是10,order_id是1001
我们应该在sharding0库中的t_order_1和t_order_item_1中新建数据:


	INSERT INTO `t_order_1` VALUES ('1001', '10');  INSERT INTO `t_order_item_1` VALUES ('4', '1001', '2');  




好了,准备工作做完了,我们运行main函数,运行结果为:




好了,sharding-jdbc正常工作了

这篇关于学习dangdang的分库分表扩展框架sharding-jdbc(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/425670

相关文章

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

解决若依微服务框架启动报错的问题

《解决若依微服务框架启动报错的问题》Invalidboundstatement错误通常由MyBatis映射文件未正确加载或Nacos配置未读取导致,需检查XML的namespace与方法ID是否匹配,... 目录ruoyi-system模块报错报错详情nacos文件目录总结ruoyi-systnGLNYpe

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法