FlagEmbedding目前最好的sentence编码工具

2023-11-26 01:45

本文主要是介绍FlagEmbedding目前最好的sentence编码工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FlagEmbedding专注于检索增强llm领域,目前包括以下项目:

Fine-tuning of LM : LM-Cocktail
Dense Retrieval: LLM Embedder, BGE Embedding, C-MTEB
Reranker Model: BGE Reranker
更新
11/23/2023: Release LM-Cocktail, 一种通过模型融合在微调时保持原有模型通用能力的方法. 论文链接 🔥
10/12/2023: 发布 LLM-Embedder, 专为大语言模型各种检索增强任务设计的英文向量模型。论文链接
09/15/2023: 发布 论文 和 数据集.
09/12/2023: 更新:
新增重排模型:开源交叉编码器模型bge-reranker,具有比向量模型更强大的排序能力。非常建议使用或者微调它来重新排序向量模型返回的top-k文档,提高最终结果的相关性。
更新向量模型:发布bge-*-v1.5向量模型,缓解相似度分布问题,提升无指令情况下的检索能力(但检索任务仍建议使用指令)
09/07/2023: 更新微调代码: 增加难负样本挖掘脚本,增加指令参数方便在微调中添加指令.
08/09/2023: BGE模型整合入Langchain, 可以在langchain中非常简单的使用它; C-MTEB中文榜单已在线更新.
08/05/2023: 发布更小的模型(base, small), 在同尺寸模型中取得最好的性能! 🤗
08/02/2023: 🎉 🎉 发布中英文向量模型BGE(BAAI General Embedding的缩写), 在MTEB和C-MTEB榜单上取得最好的性能
08/01/2023: 发布大规模中文文本向量评测榜单 (C-MTEB), 其包括31个测试任务.
项目
LM-Cocktail
微调预训练语言模型可以更好地支持下游任务。但是,该操作可能会导致目标领域之外的一般性任务上性能下降。 为了克服这个问题,我们提出了LM-Cocktail。 LM-Cocktail在提高下游目标任务的准确度的同时,保持在其他任务上的性能。 它还可以用于为新任务生成模型,避免微调对资源和数据的要求。 你可以使用它去融合多个大语言模型(如,Llama)或者向量模型。 更多细节请参考论文和代码。

LLM Embedder
LLM-Embedder向量模型是根据LLM的反馈进行微调的。 它可以支持大型语言模型的检索增强需求,包括知识检索、记忆检索、示例检索和工具检索。 它在6个任务上进行了微调:问题回答,对话搜索,长对话, 长文本建模、上下文学习和工具学习。 更多细节请参考./FlagEmbedding/llm_embedder/README.md

BGE Reranker
交叉编码器将对查询和答案实时计算相关性分数,这比向量模型(即双编码器)更准确,但比向量模型更耗时。 因此,它可以用来对嵌入模型返回的前k个文档重新排序。 我们在多语言数据上训练了交叉编码器,数据格式与向量模型相同,因此您可以根据我们的示例 轻松地对其进行微调。 更多细节请参考./FlagEmbedding/reranker/README.md

BGE Embedding
BGE Embedding是一个通用向量模型。 我们使用retromae 对模型进行预训练,再用对比学习在大规模成对数据上训练模型。 你可以按照我们的示例 在本地数据上微调嵌入模型。 我们还提供了一个预训练示例 。 请注意,预训练的目标是重构文本,预训练后的模型无法直接用于相似度计算,需要进行微调之后才可以用于相似度计算。 更多关于bge的训练情况请参阅baai_general_embedding ,

这篇关于FlagEmbedding目前最好的sentence编码工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/424933

相关文章

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自

Linux系统调试之ltrace工具使用与调试过程

《Linux系统调试之ltrace工具使用与调试过程》:本文主要介绍Linux系统调试之ltrace工具使用与调试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、ltrace 定义与作用二、ltrace 工作原理1. 劫持进程的 PLT/GOT 表2. 重定

使用Java编写一个字符脱敏工具类

《使用Java编写一个字符脱敏工具类》这篇文章主要为大家详细介绍了如何使用Java编写一个字符脱敏工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、字符脱敏工具类2、测试工具类3、测试结果1、字符脱敏工具类import lombok.extern.slf4j.Slf4j

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个