福州大学《嵌入式系统综合设计》实验五:图像裁剪及尺寸变换

本文主要是介绍福州大学《嵌入式系统综合设计》实验五:图像裁剪及尺寸变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实验目的

在深度学习中,往往需要从一张大图中裁剪出一张张小图,以便适应网络输入图像的尺寸,这可以通过bmcv_image_crop函数实现。 实践中,经常需要对输入图像的尺寸进行调整,以适用于网络输入图片尺寸,这可以通过bmcv提供的resize函数实现。目标检测时需要将检测到的目标位置用矩形框出来,这可以通过bmcv_image_draw_rectangle函数实现。本实验的目的是掌握算能的BMCV函数bmcv_image_crop, bmcv_image_resize,bmcv_image_draw_rectangle的使用方法。

二、实验内容

编写bmcv代码,调用bmcv_image_crop, bmcv_image_resize函数实现图片裁剪及尺寸的变换,调用bmcv_image_draw_rectangle函数来在指定的位置上画矩形框。

三、开发环境

开发主机:Ubuntu 22.04 LTS

硬件:算能SE5

本地如果有SE5硬件,则可以PC机作为客户端,SE5作为服务器端。本地如果没有SE5硬件,只有云空间,则可以直接将客户端和服务器端都通过云空间实现,机在云空间的SE5模拟环境中实现。

四、实验器材

开发主机 + 云平台

五、实验过程与结论

本实验涉及的程序框架与实验4的图4-1一致,仅需根据具体调用的API函数配置相关参数即可,因此接下来重点介绍API函数的参数及其调用方法。

BMCV关键函数介绍-bmcv_image_crop

算能BMCV提供了bmcv_image_crop,方便根据需要裁剪所需数量、大小的图,具体函数形式如下:

bm_status_t bmcv_image_crop(bm_handle_t handle,  //句柄int crop_num,bmcv_rect_t* rects,bm_image input,bm_image* output)

函数的接口中,crop_num为需要裁剪出的小图数量,input 指针指向输入图像,即 bm_image 对象;output指向输出图像,rects指针指向bmcv_rect_t的结构体,表示裁剪相关的信息,包括起始坐标、crop 宽高。该指针指向了若干个crop 框的信息,框的个数由crop_num 决定。

返回值bm_status_t为BM_SUCCESS则表示裁剪成功,否则为失败。

bmcv_rect_t结构体的格式如下所示: 

Typedef struct bmcv_rect{int start_x;    // 起始横坐标int start_y;    // 起始纵坐标int crop_x;     // 输出图像宽度int crop_y;     // 输出图像高度
} bmcv_rect_t;

代码调用方式如下:

//配置crop矩形的相关信息
bmcv_rect_t crop_attr;
crop_attr.start_x = 0;
crop_attr.start_y = 0;
crop_attr.crop_w = 600;
crop_attr.crop_h = 600;
bm_image input, output;
//input, output的创建代码省略
//代码主要框架参考实验4
bmcv_image_crop(handle,1,&crop_attr,input,&output)

BMCV关键函数介绍bmcv_image_resize

算能BMCV提供了bmcv_image_resize,方便对输入的若干张图片进行尺寸调整,或者在一张大图上进行抠图并进行尺寸调整,具体函数形式如下:

bm_status_t bmcv_image_resize(bm_handle_t handle,   // bm_handle句柄int input_num,bmcv_resize_image resize_attr[4],bm_image* input,bm_image* output)

函数参数中,返回值为BM_SUCCESS表明尺寸调整成功,否则为失败;

在调用bmcv_image_resize() 之前必须确保输入的image 内存已经申请。支持最大尺寸为2048*2048,最小尺寸为16*16,最大缩放比为32。

input 和output参数为指向输入/输出 bm_image 对象的指针。每个bm_image 需要外部调用bmcv_image_create 创建。image内存可以使用bm_image_alloc_dev_ mem 或者bm_image_copy_host_to_device 来开辟新的内存,或者使用bmcv_ image_attach 来attach 已有的内存,在输出时如无分配将在api 内部自行分配。

image_num 表示输入待调整尺寸的图片数,最多支持4张,如果input_num > 1, 那么多个输入图像必须是连续存储的(可以使用bm_image_alloc_contiguous_mem 给多张图申请连续空间);resize_attr[4]为每张图片对应的 resize 参数, 最多支持 4 张图片,其类型为bmcv_resize_image结构体。

bmcv_resize_image描述了一张图中resize 配置信息,其具体格式如下:

typedef struct bmcv_resize_image_s{bmcv_resize_t *resize_img_attr;int roi_num;unsigned char stretch_fit;unsigned char padding_b;unsigned char padding_g;unsigned char padding_r;unsigned int interpolation;
}bmcv_resize_image;

其中,roi_num 描述了一副图中需要进行resize 的子图总个数;stretch_fit 表示是否按照原图比例对图片进行缩放,1 表示无需按照原图比例进行缩放,0表示按照原图比例进行缩放,当采用这种方式的时候,结果图片中未进行缩放的地方将会被填充成特定值;padding_r,padding_g, padding_b 表示当stretch_fit 设成0的情况下,rgb通道上被填充的值; interpolation 表示缩图所使用的算法, 设为BMCV_INTER_NEAREST 表示最近邻算法,设为BMCV_INTER_LINEAR 表示线性插值算法。

resize_img_attr为bmcv_resize_t结构体类型的指针,其具体内容如下所示:

typedef struct bmcv_resize_s{int start_x;int start_y;int in_width;int in_height;int out_width;int out_height;
}bmcv_resize_t;

其中,start_x 描述了resize 起始横坐标(相对于原图),常用于抠图功能, start_y 描述了resize 起始纵坐标(相对于原图),常用于抠图功能;in_width, in_height描述了crop 图像的宽和高。out_width 和out_height描述了输出图像的宽和高。

函数调用方式如下:

int image_num = 1;
int crop_w = 400, crop_h = 400;
int resize_w = 400, resize_h = 400;
int image_w = 1000, image_h = 1000;
int img_size_i = image_w * image_h * 3;
int img_size_o = resize_w * resize_h * 3;bmcv_resize_image resize_attr[image_num];
bmcv_resize_t resize_img_attr[image_num];for (int img_idx = 0; img_idx < image_num; img_idx++) {resize_img_attr[img_idx].start_x = 0;            //抠图的起始横坐标resize_img_attr[img_idx].start_y = 0;            //抠图的起始纵坐标resize_img_attr[img_idx].in_width = crop_w;      //抠图的宽resize_img_attr[img_idx].in_height = crop_h;     //抠图的高resize_img_attr[img_idx].out_width = resize_w;   //输出的宽resize_img_attr[img_idx].out_height = resize_h;  //输出的高
}for (int img_idx = 0; img_idx < image_num; img_idx++) {resize_attr[img_idx].resize_img_attr = &resize_img_attr[img_idx];resize_attr[img_idx].roi_num = 1;resize_attr[img_idx].stretch_fit = 1;resize_attr[img_idx].interpolation = BMCV_INTER_NEAREST;
}bm_image input[image_num];
bm_image output[image_num];cv::Mat Input,Out;
Input = cv::imread(argv[1], 0);for (int img_idx = 0; img_idx < image_num; img_idx++) {//创建输入输出图像对象,并分配空间,转化为BMI格式bmcv_image_resize(handle, image_num, resize_attr, input, output);
}

BMCV关键函数介绍-bmcv_image_draw_rectangle

算能BMCV提供了bmcv_image_draw_rectangle,以便用矩形框出感兴趣区域。具体函数形式如下:

bm_status_t bmcv_image_draw_rectangle(bm_handle_t handle,bm_image image,int rect_num,* rects,int line_width,unsigned char r,unsigned char g,unsigned char b)

其中,handle为bm_handle 句柄;image是需要在其上画矩形框的bm_image 对象;rect_num为绘制矩形数量,指rects 指针中所包含的bmcv_rect_t 对象个数;rects为指向bmcv_rect_t对象(参考bm_image_resize函数参数说明)的指针,用以表示各个框所绘制的矩形数据(宽高等);line_width表示线宽;r,g,b为所绘制线条三原色的值。

在代码中调用方式如下:

bm_image src;
//创建图像
bmcv_rect_t rect;
rect.start_x = 100;
rect.start_y = 100;
rect.crop_w = 200;
rect.crop_h = 300;//在src对应的图像对象上,画1个框,框的信息在rect对象里描述。矩形线宽为3,颜色为红色。
bmcv_image_draw_rectangle(handle,src,1,&rect,3,255,0,0);

OpenCV函数介绍 

在OpenCV中,可以直接通过对图像长、宽维度进行操作,以实现图像剪裁的效果,如下所示

dst=src[200:2560,300:2062]

OpenCV提供resize函数,可以用于图像尺寸缩放,其函数接口如下所示

void resize (InputArray src,OutputArray dst,Size dsize,double fx=0, double fy=0,int interpolation=INTER_LINEAR)

其中,src是原图,dst是输出结果图,fx表达横向的放缩倍数,fy表达纵向的放缩倍数,dsize表达放缩后的图像的横和纵向长度;interpolation为插值方式。

其调用方式如下图所示。

resize(src, dst, Size(), 0.5, 0.5, interpolation);

OpenCV提供rectangle函数,以实现在输入图像img上画出一个矩形,此时矩形通过左上角的点和右下角的点坐标pt1,pt2 表示。 函数参数含义与

void cv::rectangle(InputOutputArray img,Point 	pt1,                // 矩形框左上角点的坐标Point 	pt2,                // 矩形框右下角点的坐标const Scalar & 	color,      // 线的颜色int 	thickness = 1,      // 线的宽度int 	lineType = LINE_8,  // 线的类型int 	shift = 0           // 点坐标中小数位数。
)	

执行结果

bmcv_crop:

执行make后上传到云平台或者SOC盒子中,即可实现对图片的裁剪。

root@06416e512cb7:/tmp/crop# chmod 777 bmcv_crop
root@06416e512cb7:/tmp/crop# ./bmcv_crop cutecat.jpeg
open /dev/jpu successfully,device index = 0, jpu fd = 8,vpp fd = 9

效果如下:

root@b3e319d8a0c8:~/bmnnsdk2-bm1684_v2.7.0/examples/bmcv_resize# ls
Makefile Readme.md bmcv_resize2 bmcv_resize2.cpp bmcv_resize2.o common.h cutecat.jpeg out.jpe

bmcv_resize:

按照实验1、实验2步骤,生成可执行文件并上传到算能盒子,执行:

bmcv_resize文件夹内的文件如图所示

root@b3e319d8a0c8:~/bmnnsdk2-bm1684_v2.7.0/examples/bmcv_resize# ls

Makefile Readme.md bmcv_resize2 bmcv_resize2.cpp bmcv_resize2.o common.h cutecat.jpeg out.jpeg

 Greycat.jpeg如图所示

给可执行文件赋权限并执行

root@06416e512cb7:/tmp/crop# chmod 777 bmcv_resize
root@06416e512cb7:/tmp/crop# ./bmcv_resize greycat.jpeg bmcv
Open /dev/jpu successfully,device index = 0,jpu fd = 8,vpp fd = 9

root@06416e512cb7:/tmp/crop# ./bmcv_resize greycat.jpeg opencv
Open /dev/jpu successfully,device index = 0,jpu fd = 4,vpp fd = 5

执行结果如下所示(生成out.jpg)

root@b3e319d8aoc8:~/bmnnsdk2-bm1684_v2.7.0/examples/bmcv_resize# ls
Makefile Readme.md bmcv_resize2 bmcv_resize2.cpp bmcv_resize2.o common.h cutecat.jpeg out.jpg 

bmcv_drawrect:

类似地,执行画矩形框的代码,可画出矩形框,具体如下:

root@06416e512cb7 : /tmp/crop# chmod 777 bmcv_ drawrect
root@06416e512cb7:/tmp/crop# ./bmcv_drawrect greycat.jpeg bmcv
Open /dev/jpu successfully,device index = 0, jpu fd = 4,vpp fd = 5

执行结果如下所示(生成out.jpg)

root@b3e319d8a0c8:~/bmnnsdk2-bm1684_v2.7.0/examples/bmcv_drawrect# ls
Makefile Readme.md bmcv_drawrect bmcv_drawrect.cpp bmcv_drawrect.o  common.h cutecat.jpeg greycat.jpeg out.jpg

root@b3e319d8a0c8:~/bmnnsdk2-bm1684_v2.7.0/examples/bmcv_drawrect# 

生成的结果out.jpg如上图所示。

这篇关于福州大学《嵌入式系统综合设计》实验五:图像裁剪及尺寸变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/418764

相关文章

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Linux系统之stress-ng测压工具的使用

《Linux系统之stress-ng测压工具的使用》:本文主要介绍Linux系统之stress-ng测压工具的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、理论1.stress工具简介与安装2.语法及参数3.具体安装二、实验1.运行8 cpu, 4 fo

ubuntu20.0.4系统中安装Anaconda的超详细图文教程

《ubuntu20.0.4系统中安装Anaconda的超详细图文教程》:本文主要介绍了在Ubuntu系统中如何下载和安装Anaconda,提供了两种方法,详细内容请阅读本文,希望能对你有所帮助... 本文介绍了在Ubuntu系统中如何下载和安装Anaconda。提供了两种方法,包括通过网页手动下载和使用wg

ubuntu系统使用官方操作命令升级Dify指南

《ubuntu系统使用官方操作命令升级Dify指南》Dify支持自动化执行、日志记录和结果管理,适用于数据处理、模型训练和部署等场景,今天我们就来看看ubuntu系统中使用官方操作命令升级Dify的方... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。