2021SC@SDUSC-山东大学软件工程与实践-Senta(八)

2023-11-23 11:59

本文主要是介绍2021SC@SDUSC-山东大学软件工程与实践-Senta(八),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期续接2021SC@SDUSC-山东大学软件工程与实践-Senta(七),继续对Metrics
中的glue_eval进行分析。

def matthews_corrcoef(preds, labels):"""matthews_corrcoef"""preds = np.array(preds)labels = np.array(labels)tp = np.sum((labels == 1) & (preds == 1))tn = np.sum((labels == 0) & (preds == 0))fp = np.sum((labels == 0) & (preds == 1))fn = np.sum((labels == 1) & (preds == 0))mcc = ( (tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn) )return mcc

构建matthews_corrcoef函数进行二分类评估:运用numpy中的array函数创建preds 和 labels两个数组,并计算mcc指标。

MCC是应用在机器学习中,用以测量二分类的分类性能的指标,该指标考虑了真阳性,真阴性,假阳性和假阴性,通常认为该指标是一个比较均衡的指标,即使是在两类别的样本含量差别很大时,也可以应用它。
MCC本质上是一个描述实际分类与预测分类之间的相关系数,它的取值范围为[-1,1],取值为1时表示对受试对象的完美预测,取值为0时表示预测的结果还不如随机预测的结果,-1是指预测分类和实际分类完全不一致。

def f1_score(preds, labels):"""f1_score"""preds = np.array(preds)labels = np.array(labels)tp = np.sum((labels == 1) & (preds == 1))tn = np.sum((labels == 0) & (preds == 0))fp = np.sum((labels == 0) & (preds == 1))fn = np.sum((labels == 1) & (preds == 0))p = tp / (tp + fp)r = tp / (tp + fn)f1 = (2 * p * r) / (p + r + 1e-8)return f1

构建f1_score()函数计算f1指标。 f1: 精确率和召回率的调和平均。

def pearson_and_spearman(preds, labels):"""pearson_and_spearman"""preds = np.array(preds)labels = np.array(labels)pearson_corr = pearsonr(preds, labels)[0]spearman_corr = spearmanr(preds, labels)[0]return {"pearson": pearson_corr,"spearmanr": spearman_corr,"corr": (pearson_corr + spearman_corr) / 2,}

构建pearson_and_spearman函数计算pearson和spearman统计系数

pearson系数用于评估两个连续变量之间的线性关系。
在这里插入图片描述
-1 ≤ p ≤ 1
p接近0代表无相关性
p接近1或-1代表强相关性

spearman系数评估两个连续变量之间的单调关系。在单调关系中,变量趋于一起变化,但不一定以恒定速率变化。
在这里插入图片描述

def acc_and_f1(preds, labels):"""acc_and_f1"""preds = np.array(preds)labels = np.array(labels)acc = simple_accuracy(preds, labels)f1 = f1_score(preds, labels)return {"acc": acc,"f1": f1,"acc_and_f1": (acc + f1) / 2,}

构建acc_and_f1函数求acc与f1的平均值。
ACC = (TP + TN) / (P + N) 即:(真阳性+真阴性) / 总样本数

这篇关于2021SC@SDUSC-山东大学软件工程与实践-Senta(八)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417787

相关文章

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa