python+人脸识别+opencv实现真实人脸驱动的阿凡达(上)

2023-11-23 10:40

本文主要是介绍python+人脸识别+opencv实现真实人脸驱动的阿凡达(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、前言
  • 二、技术路线
  • 三、主要技术点分析
    • (1) 人脸识别模块特征点的漂移
    • (2) 柔性运动与刚性运动的处理
      • setp1 基于人脸特征点的三角剖分
      • setp2 基于三角映射的仿射变换
    • (3) 正脸转侧脸的处理
  • 四、小结

一、前言

我们在此前的名叫python+opencv实现人脸微整形博文里已经简单地实现了人脸图像的微形变,为人脸驱动一个虚拟人脸提供了一些基础,但是运行性能上面需要优化,因为要想用人脸特征点实时驱动,需要非常快速的响应时间。目前国内外高等院校利用深度学习、生成神经网络等技术取得了较大的进展,由于神经网络需要耗费大量的算力,动则需要1万元以上的显卡3块并训练3个星期,不是个人能玩得,本篇试图利用简单图像处理原理继续深入探究人脸驱动应用,作一下入门级研究,目标是基于人脸识别出的特征点(如眉毛、眼睛、嘴唇)并计算相机的相对于人脸的朝向,简单实现真人脸微表情驱动一张虚拟人脸,虚拟人脸可以是一个二次元人脸、一个卡通脸或者是另一个AI生成的真人脸。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

二、技术路线

在这里插入图片描述
如上图所示,主要技术路线是:首先,通过摄像头实时捕捉人脸,并通过人脸识别软件模块获取真实人脸得特征点(如下图):
在这里插入图片描述
然后将特征点映射至数字人得对应特征点上,形成运动的主从运动映射(即,主动特征点产生偏移dx、dy,那么从动点也使得发生偏移),这样就实现了人脸驱动的功能,如下图的人眼球运动,通过人脸检测,获取眼球的位置点作为驱动点,当眼球发生偏移,数字人从动点眼睛也发生变化了。
在这里插入图片描述

三、主要技术点分析

虽然以上的技术路线看起来比较简单,但是我们通过前期的测试发现,要可靠的运行,还存在一些比较底层的问题需要优化或者解决,主要包括:

(1) 人脸识别模块特征点的漂移

人脸识别模块我们可以通过多种开源程序获得,这里我们使用的是python库——face_recognition,识别较为准确,但是识别出的特征点存在飘逸,如果直接将模块识别出的特征点映射到阿凡达从动点,会出现随机微小的抖动,显得非常的不自然。
我们主要采用设置时间窗口,并进行均值计算,在不牺牲实时性的前提下用平均值代替瞬时值,起到了一定的滤波效果。后续再碰到此来问题,还将尝试其它消除稳定性的算法,本次代码部分如下:

    if firstloop and ticktak<6:  #时间周期设为5个循环时间       rig_center_xs0.append(rig_center_x)rig_center_ys0.append(rig_center_y)if firstloop and ticktak>=6:#大于5个周期,为下一个间隔数据  rig_center_xs.append(rig_center_x)rig_center_ys.append(rig_center_y)         if ticktak>10:ticktak=0screen.blit(bg_img, (0, 0))count=0while len(rig_center_xs0):#计算k-1间隔平均值count+=1rig_center_x0=rig_center_x0+rig_center_xs0.popleft() rig_center_y0=rig_center_y0+rig_center_ys0.popleft()            rig_center_x0=int(rig_center_x0/count)            rig_center_y0=int(rig_center_y0/count)count=0while len(rig_center_xs):#计算k间隔平均值count+=1rig_center_x1=rig_center_x1+rig_center_xs.popleft() rig_center_y1=rig_center_y1+rig_center_ys.popleft()            rig_center_x1=int(rig_center_x1/count)            rig_center_y1=int(rig_center_y1/count)#计算两个窗口期的偏移量,用于驱动数字人对应从动点deyesx=rig_center_x1-rig_center_x0deyesy=rig_center_y1-rig_center_y0        

(2) 柔性运动与刚性运动的处理

同一视角下,人脸的运动点可以认为是刚性运动+柔性运动的组合结果。所谓的刚性运动,是运动部位不产生自身的形变,人脸上眼球、牙齿、鼻子、耳朵等的运动可以认为是刚性的运动;所谓柔性运动,这里指的是运动的部位产生了形变、弯曲、拉扯等,如表情中眉毛的微微变形、嘴巴的张大缩小、眼睛的睁大等。
在此前的博文中我们采用“控制点位置变化来影响周边的像素点的变化”的原理来实现局部的变形,但是由于需要便利所有的像素点计算量比较大,实际生成应用存在一定的性能瓶颈。受到linve2d技术(一种应用于电子游戏的绘图渲染技术)的启发,可以应用可自定义的三角剖分,加上局部仿射变换进行所控图像的任意柔性变形!主要解决的思路如下:

setp1 基于人脸特征点的三角剖分

首先我们根据人脸识别模块获得正面人脸的特征点,并利用三角剖分算法对人脸进行三角分割:
在这里插入图片描述
然后在数字人中自定义映射点,并根据所得到的剖分也进行三角形分割。
在这里插入图片描述
在这里插入图片描述
这样就实现了一一对应,当然这个工作需要做细致,并进行反复的调试。

setp2 基于三角映射的仿射变换

这一步是要根据所得到的三角,对每个三角部分进行前后帧的仿射变换,我们可以利用opencv自带的工具进行计算,先计算仿射变换矩阵,再利用cv2.warpAffine进行变换:

        # 计算仿射阵        WMat = cv2.getAffineTransform( np.float32(tri1), np.float32(tri2) )              # 根据仿射阵计算目标图像img2Cropped = cv2.warpAffine( img1, WMat, (r2[2], r2[3]), None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101 )

这样将所有的三角块都遍历一遍,就完成了整个人脸的柔性变形!

(3) 正脸转侧脸的处理

由于我们入门级的数字人只是一个二维的正脸图像,没有三维的信息,如何让她动起来(左右微微摇头),从而产生更加仿真的结果。这块未经过测试,在本篇先不予以说明,待测试完后在后续博文中发出。

四、小结

上篇就到此浅尝则至了,以上所描述的技术我们一步一步敲代码,运行测试调试,用python已经写到了730行,这可能仅仅只是开始,过程非常耗时间,当完成一个初步应用后,我们打算把这个程序开源,希望得到更多人的助力。

这篇关于python+人脸识别+opencv实现真实人脸驱动的阿凡达(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417363

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre