基于Pytorch肺部感染识别案例(采用ResNet网络结构)

2023-11-23 08:30

本文主要是介绍基于Pytorch肺部感染识别案例(采用ResNet网络结构),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、整体流程

1. 数据集下载地址:https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/download

2. 数据集展示

案例主要流程:

第一步:加载预训练模型ResNet,该模型已在ImageNet上训练过。

第二步:冻结预训练模型中低层卷积层的参数(权重)。

第三步:用可训练参数的多层替换分类层。

第四步:在训练集上训练分类层。

第五步:微调超参数,根据需要解冻更多层。

ResNet 网络结构图

二、显示图片功能

#1加载库
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
import os
from torchvision.utils import make_gridfrom torch.utils.data import DataLoader
#2、定义一个方法:显示图片
def img_show(inp, title=None):plt.figure(figsize=(14,3))inp = inp.numpy().transpose((1,2,0)) #转成numpy,然后转置mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224,0.225])inp = std * inp + meaninp = np.clip(inp, 0, 1)plt.imshow(inp)if title is not None:plt.title(title)plt.pause(0.001)plt.show()
def main():pass#3、定义超参数BATCH_SIZE = 8DEVICE = torch.device("gpu" if torch.cuda.is_available() else "cpu")#4、图片转换    使用字典进行转换data_transforms = {'train': transforms.Compose([transforms.Resize(300),transforms.RandomResizedCrop(300) ,#随机裁剪transforms.RandomHorizontalFlip(),transforms.CenterCrop(256),transforms.ToTensor(), #转为张量transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) #正则化]),'val': transforms.Compose([transforms.Resize(300),transforms.CenterCrop(256),transforms.ToTensor(), #转为张量transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) #正则化])}#5、操作数据集# 5.1、数据集路径data_path = "D:/chest_xray/"#5.2、加载数据集的train valimg_datasets = { x : datasets.ImageFolder(os.path.join(data_path,x),data_transforms[x]) for x in ["train","val"]}#5.3、为数据集创建一个迭代器,读取数据dataloaders = {x : DataLoader(img_datasets[x], shuffle=True,batch_size= BATCH_SIZE) for x in ["train","val"]}# 5.4、训练集和验证集的大小(图片的数量)data_sizes = {x : len(img_datasets[x]) for x in ["train","val"]}# 5.5、获取标签类别名称 NORMAL 正常 -- PNEUMONIA 感染target_names = img_datasets['train'].classes#6 显示一个batch_size 的图片(8张图片)#6.1 读取8张图片datas ,targets = next(iter(dataloaders['train'])) #iter把对象变为可迭代对象,next去迭代#6.2、将若干正图片平成一副图像out = make_grid(datas, norm = 4, padding = 10)

这篇关于基于Pytorch肺部感染识别案例(采用ResNet网络结构)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/416654

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La