基于Pytorch肺部感染识别案例(采用ResNet网络结构)

2023-11-23 08:30

本文主要是介绍基于Pytorch肺部感染识别案例(采用ResNet网络结构),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、整体流程

1. 数据集下载地址:https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/download

2. 数据集展示

案例主要流程:

第一步:加载预训练模型ResNet,该模型已在ImageNet上训练过。

第二步:冻结预训练模型中低层卷积层的参数(权重)。

第三步:用可训练参数的多层替换分类层。

第四步:在训练集上训练分类层。

第五步:微调超参数,根据需要解冻更多层。

ResNet 网络结构图

二、显示图片功能

#1加载库
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
import os
from torchvision.utils import make_gridfrom torch.utils.data import DataLoader
#2、定义一个方法:显示图片
def img_show(inp, title=None):plt.figure(figsize=(14,3))inp = inp.numpy().transpose((1,2,0)) #转成numpy,然后转置mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224,0.225])inp = std * inp + meaninp = np.clip(inp, 0, 1)plt.imshow(inp)if title is not None:plt.title(title)plt.pause(0.001)plt.show()
def main():pass#3、定义超参数BATCH_SIZE = 8DEVICE = torch.device("gpu" if torch.cuda.is_available() else "cpu")#4、图片转换    使用字典进行转换data_transforms = {'train': transforms.Compose([transforms.Resize(300),transforms.RandomResizedCrop(300) ,#随机裁剪transforms.RandomHorizontalFlip(),transforms.CenterCrop(256),transforms.ToTensor(), #转为张量transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) #正则化]),'val': transforms.Compose([transforms.Resize(300),transforms.CenterCrop(256),transforms.ToTensor(), #转为张量transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) #正则化])}#5、操作数据集# 5.1、数据集路径data_path = "D:/chest_xray/"#5.2、加载数据集的train valimg_datasets = { x : datasets.ImageFolder(os.path.join(data_path,x),data_transforms[x]) for x in ["train","val"]}#5.3、为数据集创建一个迭代器,读取数据dataloaders = {x : DataLoader(img_datasets[x], shuffle=True,batch_size= BATCH_SIZE) for x in ["train","val"]}# 5.4、训练集和验证集的大小(图片的数量)data_sizes = {x : len(img_datasets[x]) for x in ["train","val"]}# 5.5、获取标签类别名称 NORMAL 正常 -- PNEUMONIA 感染target_names = img_datasets['train'].classes#6 显示一个batch_size 的图片(8张图片)#6.1 读取8张图片datas ,targets = next(iter(dataloaders['train'])) #iter把对象变为可迭代对象,next去迭代#6.2、将若干正图片平成一副图像out = make_grid(datas, norm = 4, padding = 10)

这篇关于基于Pytorch肺部感染识别案例(采用ResNet网络结构)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/416654

相关文章

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动