智能卡接口芯片解决方案

2023-11-23 01:52

本文主要是介绍智能卡接口芯片解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、基本概述

HCM8035是一款简洁且低成本的智能IC卡模拟接口芯片。内嵌升压模块,支持5V,3V,1.8V全电压读写。具有全面的安全保护机制,包括ESD保护,端口短路保护,电源上掉电保护。外围元件数目少,采用QFN32L封装。

今天开始介绍自己最近在调试和应用的产品,智能卡接口芯片,主要应用于一些需要智能卡的场合,通常处于控制器和卡端设备之间,起一个桥梁的作用。IC 银行卡支付、电子支付、银行卡、身份证、电视机支付、SIM卡接口等等。

二、引脚定义

三、典型应用电路

四、功能模块

供电模块

VDDP 为芯片供电电源(2.7~5V)

控制接口电源 VDD(INTF)所有控制端的 I/O 电源均上拉至 VDD(INTF)

内部产生参考电压 VREG(1.8)

上电时,OFFN 保持低电平,直到 CMDVCCN 变高且 PRESN 变低为止。

掉电时,OFFN 会在 VDDP 跌过阈值电压后才变低。

智能卡未激活时,CMDVCCN 拉高,将使用内部振荡器,工作在低频模式省电。

电源部分包含 DCDC 电压转换器用于给智能卡提供电源 VCC(5、3、1.8)

电压监控模块

电压监控模块用于电源上电复位以及读卡器件电源掉电。监管芯片内部 VDDP 与 VREG,

接口电源电压 VDD(INTF)通过 PORADJ 引脚分压来检测。

VDDP、VREG、VDD(INTF)电压监控信号会发送给逻辑控制部分参与控制芯片复位

时钟电路模块

智能卡时钟 CLK,可以使用外部时钟通过 XTAL1 送入,也可以使用晶振通过 XTAL1 和

XTAL2 送入,如果 XTAL1 有外部时钟会优先采用,无需控制。

有 CMDVCCN 下降沿启动时钟自动选择机制,在内部时钟运行的状态下,首先判断是否有

外部时钟,如果有外部时钟则采用外部时钟,如没有则启动晶振。使用外部时钟时,应当在

CMDVCCN 下降沿前启动外部时钟。

通过 CLKDIV1 与 CLKDIV2 选择使用频率为 fXTAL、fXTAL/2、fXTAL/4、fXTAL/8

时钟操作为同步的,不会有小于 45%最小时钟周期的脉冲出现,这样可以确保开始和最后

一个时钟的正确性。

CLK 时钟占空比在 45%~55%之间

I/O电路模块

三条数据接口 I/O、AUX1、AUX2 是相同的

内置上拉电阻 10KΩ上拉至各自的电源

允许两边电源不相同

最先收到下降沿的那边为主端

经过 200ns 延迟后主端将 0 信号传送至从端

当主端回到逻辑 1,从端传送逻辑 1 等待 200ns 后,两端再次进入对等状态

80pF 负载拉高到 0.9 VCC 电压时将提供大于 1mA 的电流,保证上拉信号在传输过程中足够

快速。

I/O 引脚电流限制为 15mA

最大频率 1.5MHz

片选控制模块

CS 为片选控制信号,当 CS 为高,芯片响应控制;当 CS 为低,CMDVCCN、RSTIN、CLKDIV1、

CLKDIV2、EN_5V/3VN、EN_1.8VN 锁定

I/OUC、AUX1UC、AUX2UC 设置为弱上拉模式停止信号从卡端传送。OFFN 三态输出。

休眠及深度休眠模式

上电后如果 CMDVCCN 拉高 则进入休眠模式,只有少量逻辑来激活唤醒。

1、所有与卡的连接失效(约与地呈 200 欧电阻)

2、I/OUC、AUX1UC、AUX2UC 呈弱上拉(10KΩ上拉至 VDD(INTF))

3、电压产生器不工作

4、电压监管模块仍生效

5、内部时钟处于低频工作模式

深度休眠模式启动需要 CMDVCCN 拉高同时

EN5V3VN 与 EN18VN 拉低时生效。深度休眠模式必须在读卡不需要进行是才可进入。在深度

休眠模式中所有的电路单元都将关闭。OFFN 将跟随 PRESN 的状态。变更三个控制信号的状

态将退出深度休眠模式

VCC电压源

VCC 电压源可以提供 65mA/35mA 缓冲电流(5V&3V/1.8V)

VCC 电源 125mA 过流保护

在上电过程中在 4ms 内(打开 IO 之前)允许 200mA

错误机制

发生以下错误则保护:

VCC 发生短路或过流

读取过程中卡被拔出

VDDP、VDD(INTF)或 Vreg 发生拉低

过热

有两种情况:

1、 CMDVCCN 处于高的状态(未在读卡周期):OFFN 在读卡时为高,不在读卡时为低,

电源监控模块会拉低 VDDP 重新进入复位,但是不会对 OFFN 进行上拉操作。未开启卡

供电,接口无短路,无过热。

2、 CMDVCCN 处于低的状态(正在读卡周期):OFFN 立即拉低,退出激活,直到 CMDVCCN

返回高。当没有错误发生后,OFFN 返回高。

这篇关于智能卡接口芯片解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414487

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到