2023 年 亚太赛 APMCM ABC题 国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析

本文主要是介绍2023 年 亚太赛 APMCM ABC题 国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。
在这里插入图片描述
以五一杯 A题为例子,以下是咱们做的一些想法呀!

问题1:

(1)建立数学模型:

无人机投放模型在这个问题中的作用是建立数学模型来描述无人机投放爆炸物的过程,并且可以通过该模型来优化无人机投放的策略,从而提高命中率和效率。具体来说,该模型可以通过考虑无人机的飞行高度、飞行速度、俯冲角度、发射速度等因素来确定最佳的发射距离和发射时机,以确保物体能够准确地命中目标。此外,该模型还可以考虑外部因素,如风速和风向等,来调整无人机的飞行轨迹和姿态,以提高投放精度和稳定性。

对于本题的模型,有:

其中 ρ 为空气密度,S 为物资横截面积, 为物资的阻力系数, g 为重力加速度,F 为无人机与物资之间的牵引力。

当无人机投放物资时,物资与无人机之间断开连接,牵引力 F取0,上式可以化简为:

其中为重力加速度。

(2)在无人机的飞行高度为 300m,飞行速度为 300km/h,风速为 5m/s,风向与水平面平行的情况下,使用代码解决:

import

 math# 定义常量
v0 = 300      # 飞行速度,单位km/h
vw = 5        # 风速,单位m/s
h = 300       # 飞行高度,单位m
r = 0.2       # 球形物资半径,单位m
m = 50        # 球形物资质量,单位kg
g = 9.8       # 重力加速度,单位m/s^2# 计算投放距离
d0 = v0**2/g * math.sin(0*2*math.pi/360) + vw*v0/g * math.cos(0*2*math.pi/360)
d180 = v0**2/g * math.sin(180*2*math.pi/360) + vw*v0/g * math.cos(180*2*math.pi/360)
d90 = v0**2/g * math.sin(90*2*math.pi/360) + vw*v0/g * math.cos(90*2*math.pi/360)# 输出结果
print(f"无人机飞行方向与风向相同时,投放距离为:{d0:.1f}m")
print(f"无人机飞行方向与风向相反时,投放距离为:{d180:.1f}m")

问题2:
假设无人机在水平飞行过程中到达距离目标点的水平距离为 x ,飞行高度为 ℎ ,飞行速度为v ,俯冲角度为 α ,发射速度为 u 。则无人机发射炸弹的轨迹可以分解为水平方向和竖直方向两个分量。

在水平方向上,无人机在 秒到达目标点,发射炸弹的时间为 秒。发射炸弹时无人机的水平速度为vcos⁡α ,炸弹的水平初速度为 ucos⁡α。

在竖直方向上,炸弹自由落体运动,竖直初速度为 usin⁡α ,竖直加速度为g 。设炸弹飞行的时间为 秒,则有:

将 t3 的值代入到水平方向上的运动中,则可以求得无人机与目标点之间的距离 x1 :

假设无人机发射炸弹的距离为 d ,则需要满足 1000≤d≤3000 。为了使无人机在发射炸弹时仍能保持安全的飞行高度,假设无人机的飞行高度为 800m ,则有 ℎ≥300m 。

为了使发射策略可行,需要选择合适的俯冲角度 α 和发射速度u。假设 α 为定值,可以根据上述模型求出发射速度u与发射距离d的关系,并绘制出其图像,如下图所示。

由图像可知,当俯冲角度为 30∘ 时,发射速度最小,约为 426.8m/s ,此时发射距离为d≈1716.2m

问题3:
无人机的飞行稳定性可以用无人机的俯仰角和偏航角的变化率来描述,即:

其中, θ表示俯仰角, 表示偏航角。这个数值越小,说明无人机的飞行越稳定。

无人机的命中精度可以用命中目标的距离来描述,与无人机的飞行稳定性呈反比关系,即:

在实际应用中,可以通过无人机的传感器数据来计算无人机的俯仰角和偏航角的变化率,并根据上述公式来评估无人机的飞行稳定性和命中精度。

import numpy as np
import matplotlib.pyplot as pltdef dynamic_equation(x, u):# 状态方程A = np.array([[1, 0, 0, dt, 0, 0],[0, 1, 0, 0, dt, 0],[0, 0, 1, 0, 0, dt],[0, 0, 0, 1-0.5*rho*Cd*S/m*dt, 0, 0],[0, 0, 0, 0, 1-0.5*rho*Cd*S/m*dt, 0],[0, 0, 0, 0, 0, 1-0.5*rho*Cd*S/m*dt]])# 输入方程B = np.array([[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, -0.5*rho*S*vx0**2/m*dt],[0, 0, 0, -0.5*rho*S*vx0**2/m*dt],[0, 0, 0, -0.5*rho*S*vx0**2/m*dt]])# 状态更新x_new = np.dot(A, x) + np.dot(B, u)return x_new# 定义无人机飞行过程的仿真函数
def simulate_flight(x0, u, t):# 初始化状态和控制输入x = x0u = u.reshape(-1, 1)# 初始化状态列表和控制输入列表x_list = [x]u_list = [u]# 循环仿真for i in range(len(t)):# 计算下一个状态x = dynamic_equation(x, u)# 记录状态和控制输入x_list.append(x)、、模糊处理 完整版看文章下面~u_list.append(u)# 将列表转换为数组x_array = np.array(x_list)u_array = np.array(u_list)return x_array, u_array# 无人机和环境参数设置
h = 800  # 飞行高度,单位:m
v0 = 300  # 无人机飞行速度,单位:km/h
v = np.linspace(300, 400, 101) / 3.6  # 无人机相对地面速度,单位:m/s
vw = np.array([6, 0])  # 风速,单位:m/s
gamma = np.deg2rad(45)  # 俯冲角,单位:rad
g = 9.8  # 重力加速度,单位:m/s^2# 计算无人机稳定性
S = 2 * np.pi * (0.5 ** 2)  # 球形爆炸物的参考面积
Cd = 0.5  # 球形爆炸物的阻力系数
m = 50  # 球形爆炸物的质量,单位:kg
rho = 1.2  # 空气密度,单位:kg/m^3
K = 0.5 * rho * S * Cd / m  # 阻力系数
u = np.sqrt(v ** 2 + (v0 * np.sin(gamma)) ** 2)  # 爆炸物相对空气速度
D = K * u ** 2  # 阻力大小
H = h - np.sqrt((h ** 2) / (np.tan(gamma) ** 2 + 1))  # 爆炸物发射高度
t = (H - 300) / (v0 * np.cos(gamma))  # 爆炸物发射时间
x0 = v0 * t  # 无人机前进距离
x = x0 + (v + vw[0]) * t  # 爆炸物水平位移距离
y = H - (v0 * np.sin(gamma) + (g + vw[1]) * t) * t / 2  # 爆炸物垂直位移距离
delta_x = 20 / 2  # 爆炸物命中误差,单位:cm
sigma = delta_x / 3  # 标准差
P = 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-(x - delta_x) ** 2 / (2 * sigma ** 2))  # 命中概率密度函数
hit_rate = np.trapz(P, x)  # 命中率# 可视化结果
plt.plot(v, P)
plt.xlabel('Horizontal displacement (m)')
plt.ylabel('Probability density')
plt.title('Hit probability density')
plt.show()print('The hit rate is %.2f%%.' % (hit_rate * 100))

cs数模团队在亚太赛 APMCM前为大家提供了许多资料的内容呀!!
具体可以看看我的下方名片!里面包含有亚太赛一手资料与分析!
另外在赛中,我们也会陪大家一起解析亚太赛APMCM的一些方向
关注 CS数模 团队,数模不迷路~

这篇关于2023 年 亚太赛 APMCM ABC题 国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/413733

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

使用Go实现文件复制的完整流程

《使用Go实现文件复制的完整流程》本案例将实现一个实用的文件操作工具:将一个文件的内容完整复制到另一个文件中,这是文件处理中的常见任务,比如配置文件备份、日志迁移、用户上传文件转存等,文中通过代码示例... 目录案例说明涉及China编程知识点示例代码代码解析示例运行练习扩展小结案例说明我们将通过标准库 os

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho