DPDK使用hugepage原理总结

2023-11-22 20:48

本文主要是介绍DPDK使用hugepage原理总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

hugepage原理参考http://blog.chinaunix.net/uid-28541347-id-5783934.html

DPDK版本:17.11.2

hugepage的作用: 
1. 就是减少页的切换,页表项减少,产生缺页中断的次数也减少 
2. 降低TLB的miss次数

1.DPDK使用前准备

  1. DPDK应用使用hugepage前,应保证系统已经配置hugepage
    (配置参考https://blog.csdn.net/shaoyunzhe/article/details/54614077)
  2. 将 hugetlbfs 特殊文件系统挂载到根文件系统的某个目录
    mount -t hugetlbfs hugetlbfs /dev/hugepages (挂载默认的hugeage大小)
    mount -t hugetlbfs none /dev/hugepages_2mb -o pagesize=2MB(挂载2M的)
    1G大页和2M大页必须挂载了才能使用。挂载其中一个,DPDK也能正常运行。

本测试时只设置了1G大页,具体信息如下:

挂载目录:cat /proc/mounts

2.DPDK使用hugepage代码分析

DPDK初始化函数rte_eal_init调用eal_hugepage_info_init初始化hugepage信息,

2.1. eal_hugepage_info_init初始化主要工作:

此函数主要收集可用hugepage信息(有多少页,挂载目录)。

  • 进入”/sys/kernel/mm/hugepages“目录
  • 寻找“hugepages-”开头的目录并获取此目录有后面的数字,就是hugepage大小,比如我系统下:
  • 使用struct hugepage_info 结构体保存hugepage页面大小,挂载目录,可用页数。注意:如果对应大小hugepage没有挂载,此类hugepage则不会被DPDK程序使用
    eg:比如我们没有执行mount -t hugetlbfs none /dev/hugepages_2mb -o pagesize=2MB,只挂载了mount -t hugetlbfs hugetlbfs /dev/hugepages,DPDK只会使用1G hugepage。
    DPDK程序执行时打印“EAL: 2048 hugepages of size 2097152 reserved, but no mounted hugetlbfs found for that size”表明2M的没有挂载。
  • 以下结构体就是保存hugepage信息的,这个信息后面初始化存储有用。
  • struct hugepage_info {uint64_t hugepage_sz;   /**< size of a huge page */const char *hugedir;    /**< dir where hugetlbfs is mounted */uint32_t num_pages[RTE_MAX_NUMA_NODES];/**< number of hugepages of that size on each socket */int lock_descriptor;    /**< file descriptor for hugepage dir */
    };

    本实验最后大页信息是:
    hugepage_sz=1048576(1048576*1024)
    hugedir="/dev/hugepages"
    num_pages[0]=4

int
eal_hugepage_info_init(void)
{const char dirent_start_text[] = "hugepages-";const size_t dirent_start_len = sizeof(dirent_start_text) - 1;unsigned i, num_sizes = 0;DIR *dir;struct dirent *dirent;dir = opendir(sys_dir_path);  //sys_dir_path[] = "/sys/kernel/mm/hugepages"if (dir == NULL) {RTE_LOG(ERR, EAL,"Cannot open directory %s to read system hugepage info\n",sys_dir_path);return -1;}/*遍历/sys/kernel/mm/hugepages目录下以“hugepages-”开头的目录*/for (dirent = readdir(dir); dirent != NULL; dirent = readdir(dir)) {struct hugepage_info *hpi;if (strncmp(dirent->d_name, dirent_start_text,dirent_start_len) != 0)continue;if (num_sizes >= MAX_HUGEPAGE_SIZES)break;/*internal_config为DPDK全局变量*/hpi = &internal_config.hugepage_info[num_sizes];/*保存hugepage的大小,最多保存三种大小,一般也只用到了1G,2M*/hpi->hugepage_sz =rte_str_to_size(&dirent->d_name[dirent_start_len]);/*get_hugepage_dir函数会到/proc/mounts里去寻找对应大小hugepage页挂载的目录 */hpi->hugedir = get_hugepage_dir(hpi->hugepage_sz);/* first, check if we have a mountpoint */if (hpi->hugedir == NULL) {uint32_t num_pages;num_pages = get_num_hugepages(dirent->d_name);if (num_pages > 0)RTE_LOG(NOTICE, EAL,"%" PRIu32 " hugepages of size ""%" PRIu64 " reserved, but no mounted ""hugetlbfs found for that size\n",num_pages, hpi->hugepage_sz);continue;}
......
......
}

2.2.rte_eal_hugepage_init初始化主要工作:

上面只是获取了hugepage信息,后面rte_eal_memory_init函数->rte_eal_hugepage_init->map_all_hugepages初始化每页具体虚拟地址,物理地址,大小等信息。

  • 获取全局变量,存储分配内存相关信息
/* get pointer to global configuration */mcfg = rte_eal_get_configuration()->mem_config;
  • 计算一共有多少页,并分配struct hugepage_file 结构管理所有页(如果设置了1G,2M,16G,nr_hugepages最后等于所有页数的总和,本测试nr_hugepages=4)
/* calculate total number of hugepages available. at this point we haven't* yet started sorting them so they all are on socket 0 */for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {/* meanwhile, also initialize used_hp hugepage sizes in used_hp */used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;nr_hugepages += internal_config.hugepage_info[i].num_pages[0];}/** allocate a memory area for hugepage table.* this isn't shared memory yet. due to the fact that we need some* processing done on these pages, shared memory will be created* at a later stage.*/tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));if (tmp_hp == NULL)goto fail;
  • 第一次调用map_all_hugepages创建内存映射文件。orig参数设置为1,下面解释了设置1或是0的作用
    /** Mmap all hugepages of hugepage table: it first open a file in* hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the* virtual address is stored in hugepg_tbl[i].orig_va, else it is stored* in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to* map contiguous physical blocks in contiguous virtual blocks.*/
    static unsigned
    map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,uint64_t *essential_memory __rte_unused, int orig)

    eal_get_hugefile_path函数根据页的索引生成文件路径/dev/hugepages/rtemap_x(本测试是0,1,2,3),4个文件。然后调用open,mamp进行映射。然后把得到的虚拟地址存在hugepg_tbl[i].orig_va = virtaddr;
		/* try to create hugepage file */fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);if (fd < 0) {RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,strerror(errno));goto out;}/* map the segment, and populate page tables,* the kernel fills this segment with zeros */virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,MAP_SHARED | MAP_POPULATE, fd, 0);
  • 调用find_physaddrs函数获取每页虚拟地址对应的物理地址
/** For each hugepage in hugepg_tbl, fill the physaddr value. We find* it by browsing the /proc/self/pagemap special file.*/
static int
find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{unsigned int i;phys_addr_t addr;for (i = 0; i < hpi->num_pages[0]; i++) {addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);if (addr == RTE_BAD_PHYS_ADDR)return -1;hugepg_tbl[i].physaddr = addr;}return 0;
}
  • 调用find_numasocket获取每页对应的socket  ID。因为分配页内存时,在NUMA架构中会根据NUMA的内存分配策略决定在哪个NUMA节点分配。
if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",(unsigned)(hpi->hugepage_sz / 0x100000));goto fail;}
  • 根据每页的物理地址进行排序,排序的是struct hugepage_file *tmp_hp,tmp_hp存储了所有hugepage信息,是在一开始时初始化的。qsort排序的单位是一个struct hugepage_file结构体大小,排序依据是每页的物理地址大小。
qsort(&tmp_hp[hp_offset], hpi->num_pages[0],sizeof(struct hugepage_file), cmp_physaddr);static int
cmp_physaddr(const void *a, const void *b)
{
#ifndef RTE_ARCH_PPC_64const struct hugepage_file *p1 = a;const struct hugepage_file *p2 = b;
#else/* PowerPC needs memory sorted in reverse order from x86 */const struct hugepage_file *p1 = b;const struct hugepage_file *p2 = a;
#endifif (p1->physaddr < p2->physaddr)return -1;else if (p1->physaddr > p2->physaddr)return 1;elsereturn 0;
}
  • 然后再次调用map_all_hugepages进行第二次映射。orig参数设置为0,这次和第一次调用有所区别。主要是是保证最大物理地址和最大虚拟地址都连续对应,此前已经保证物理地址是从小到大排序好了的。最后将新映射的地址保存到:hugepg_tbl[i].final_va = virtaddr;参考map_all_hugepages函数以下代码
		else if (vma_len == 0) {unsigned j, num_pages;/* reserve a virtual area for next contiguous* physical block: count the number of* contiguous physical pages. */for (j = i+1; j < hpi->num_pages[0] ; j++) {
#ifdef RTE_ARCH_PPC_64/* The physical addresses are sorted in* descending order on PPC64 */if (hugepg_tbl[j].physaddr !=hugepg_tbl[j-1].physaddr - hugepage_sz)break;
#elseif (hugepg_tbl[j].physaddr !=hugepg_tbl[j-1].physaddr + hugepage_sz)break;
#endif}num_pages = j - i;vma_len = num_pages * hugepage_sz;/* get the biggest virtual memory area up to* vma_len. If it fails, vma_addr is NULL, so* let the kernel provide the address. */vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);if (vma_addr == NULL)vma_len = hugepage_sz;}
  • 最后调用unmap_all_hugepages_orig取消第一次映射
/* unmap original mappings */if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)goto fail;
  • 然后做一些清理工作,创建共享存储,umap不需要的页,最后将页信息保存到全局变量中
if (new_memseg) {j += 1;if (j == RTE_MAX_MEMSEG)break;mcfg->memseg[j].iova = hugepage[i].physaddr;mcfg->memseg[j].addr = hugepage[i].final_va;mcfg->memseg[j].len = hugepage[i].size;mcfg->memseg[j].socket_id = hugepage[i].socket_id;mcfg->memseg[j].hugepage_sz = hugepage[i].size;}

2.3.其他

rte_eal_hugepage_init只会被RTE_PROC_PRIMARY的进程调用(多进程情况下)。rte_eal_hugepage_init完成后只是将可用的大页内存物理地址,虚拟地址,socket id,大小信息保存到了全局变量中,怎么使用这些内存还需要进一步管理。

这篇关于DPDK使用hugepage原理总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412817

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、