机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸

本文主要是介绍机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸

雷锋网(公众号:雷锋网) AI 科技评论按:无论是在树木间乱窜的猴子,还是躲避对手和进击目标的足球运动员,他们灵活敏捷的速度,都让人十分惊叹。掌握这种复杂的电机控制是物理智能研究的方向,是 AI 研究的重要组成部分。

真正的智能电机需要在一系列复杂的环境中,学习如何调节控制身体使其更加灵活来完成任务。目前,很多领域开始研究如何控制模拟人,包括计算机动画和生物力学领域。智能电机的另一种发展趋势是,使用手工制作的目标或运动捕捉的数据来产生特定的行为。 然而,这可能需要相当多技术工作的努力,也可能会导致智能电机面对新任务时,难以重新调整行为。

在以下 3 篇新的论文中,阐述了 DeepMind 已经找到了 AI 学习灵活行为的方式,这种方式不仅能够重复使用,还能解决任务。

一、丰富的环境中表现的运动行为

如果玩 Atari 或 Go 时,目标很容易描述,就是赢。但是你如何描述一个后空翻表演的过程?或者仅仅只是单纯描述一下“跳”这个动作?当 DeepMind 把运动技能教授给人工系统时,常常会遇到这个问题,就是很难准确描述一个复杂的行为。 DeepMind 目前的工作就是研究如何在简单高水平的目标下,使身体能够从头开始与环境相互作用来完成复杂的行为,例如向前移动而不会下降。更具体地说,他们训练了各种模拟人,让他们在不同的地形上进行跳跃,转弯或者蹲伏。结果显示,模拟人完成这些复杂的技能前,并没有收到具体的指示。 DeepMind 需要找到一种方法,可以训练系统中明显不同的模拟人。下面的 GIF 显示了能够产生高质量的运动的技术。

机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸
模拟的“平面”步行者反复尝试

机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸

模拟的“蚂蚁”步行者在学习如何在木板之间精确地跳跃

二、通过对抗模仿学习人体行为

上述的模拟人解决突发行为的能力非常强大,但是由于这些动作必须从头开始,所以模拟人的动作看起来和人类行为不太一样。在 DeepMind 的第 2 篇论文中,阐述了如何通过运动捕捉数据来构建一个模仿人类行为的政策网络,需要预先学习一些技能,例如步行、起步、跑步和转弯等等。目前,模拟人已经产生了类似人类的行为,可以通过重新调整这些行为来完成其他任务,比如爬楼梯,通过导航绕过围墙等等。

下面的 GIF 可以查看模拟人的行为。

机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸
人形步行者产生类似人类的行走行为

机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸

人形步行者摔倒后立即站起来

三、模拟人模仿人类各种行为

第 3 篇论文提出了构建一种最先进的生成模型的神经网络结构,它能够学习不同行为之间的关系,并模仿它所显示的具体动作。经过训练之后, DeepMind 的系统可以编码观察到的动作,还可以创建新的小动作。尽管模拟人并没有看到动作之间的过渡,依旧可以在不同类型的动作之间切换,例如在行走风格之间的转换。

机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸
GIF 中左侧和中间演示了两个行为;GIF 中右侧展示了模拟人在不同行为之间产生了它从未见过的过渡
机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸
GIF 中左侧平面步行者演示了特定的行走风格;GIF 中右侧展示了我们的模拟人使用单一政策网络来模仿这种行走风格

实现模拟人行动灵活且适应控制是 AI 研究的关键要素。 DeepMind 的工作旨在开发一套系统,能够通过学习和调整技能来解决电机控制任务,同时减少手动工程。 DeepMind 未来的研究工作主要是扩展这些方法,以便在更复杂的情况下完成更多的任务。雷锋网 AI 科技评论也会继续保持关注。

论文地址:

  • Emergence of locomotion behaviours in rich environments,https://arxiv.org/abs/1707.02286 

  • Learning human behaviours from motion capture by adversarial imitation,https://arxiv.org/abs/1707.02201 

  • Robust imitation of diverse behaviours,https://arxiv.org/abs/1707.02747 

via DeepMind,雷锋网 AI 科技评论编译

本文作者:白及

本文转自雷锋网禁止二次转载,原文链接

这篇关于机器人走路未必笨拙,DeepMind新方法训练的人工智能走得就很飘逸的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412677

相关文章

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

SQL Server 查询数据库及数据文件大小的方法

《SQLServer查询数据库及数据文件大小的方法》文章介绍了查询数据库大小的SQL方法及存储过程实现,涵盖当前数据库、所有数据库的总大小及文件明细,本文结合实例代码给大家介绍的非常详细,感兴趣的... 目录1. 直接使用SQL1.1 查询当前数据库大小1.2 查询所有数据库的大小1.3 查询每个数据库的详

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境