python 提取图片中绿色植被,计算冠层覆盖度

2023-11-22 18:50

本文主要是介绍python 提取图片中绿色植被,计算冠层覆盖度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、任务描述

提取绿色植被部分对应的红外光谱(即红绿蓝三波段提取绿色,掩膜到红外波段)

"""
author: Shuai-jie Shen 沈帅杰
CSDN: https://blog.csdn.net/weixin_45452300
公众号: AgBioIT
"""
import cv2
import numpy as np
# 第一种办法--------------------------------------------------------------
im=cv2.imread('FLIR06.jpg')#提取图像的三个通道
B, G, R = cv2.split(im)#计算植被指数
cive = 0.441*R-0.811*G+0.385*B+18.78745
gray = cive.astype('uint8')#大津阈值分割,将土壤像素点变为0,植被像素点为1
ret, th = cv2.threshold(gray, 0, 1, cv2.THRESH_BINARY+cv2.THRESH_OTSU)#保存分离的结果图
b=B*th
g=G*th
r=R*th
img=cv2.merge([b,g,r])
cv2.imwrite('resultmask.jpg', img)
# --------------------------------------总体----------------------------------------------
import pandas as pd
#
heat = pd.read_excel('3旱棚.xlsx')
heat.columns=[i for i in range(640)]
mask = np.array(th)
heatnp = np.array(heat)
heat_result = mask*heatnp
heat_result_df = pd.DataFrame(heat_result)
heat_result_df.replace(0, np.nan, inplace=True)
# heat_result_df.to_excel('heat_result_df.xlsx')
# 覆盖部分
mask_d = pd.DataFrame(mask)
mask_d=mask_d-1
heat_result_re=mask_d*heat/255
heat_result_re.replace(0, np.nan, inplace=True)
heat_1_array = np.array(heat_result)
heat_1_array = heat_1_array.reshape(-1)
heat_1_array_pd = pd.DataFrame(heat_1_array)
heat_1_array_pd = heat_1_array_pd.dropna()
heat_1_array_pd.to_excel('heat_result_df_1绿色.xlsx')
#存去除部分
heat_1_array = np.array(heat_result_re)
heat_1_array = heat_1_array.reshape(-1)
heat_1_array_pd = pd.DataFrame(heat_1_array)
heat_1_array_pd = heat_1_array_pd.dropna()
heat_1_array_pd.to_excel('heat_result_df_1_re黑色.xlsx')

第二种方法

import cv2
import numpy as np# 第二种------------------------------------------------------------------
demo = cv2.imread('FLIR06.jpg')
# 使用2g-r-b分离土壤与背景
# 转换为浮点数进行计算
demo1 = np.array(demo, dtype=np.float32) / 255.0
(b, g, r) = cv2.split(demo1)
gray = 2.4 * g - b - r
# 求取最大值和最小值
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
# 计算直方图
# hist = cv2.calcHist([gray], [0], None, [256], [minVal, maxVal])
# plt.plot(hist)
# plt.show()
# 转换为u8类型,进行otsu二值化
gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8)
(thresh, th) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
# dst=cv2.dilate(bin_img,kernel=np.ones((3,3),np.uint8))
# dst=cv2.erode(bin_img,kernel=np.ones((5,5),np.uint8))
# dst1=cv2.morphologyEx(bin_img,cv2.MORPH_CLOSE,np.ones((3,3),np.uint8))
# dst2=cv2.morphologyEx(bin_img,cv2.MORPH_OPEN,np.ones((3,3),np.uint8))
# 得到彩色的图像
(b8, g8, r8) = cv2.split(demo)
color_img = cv2.merge([b8 & th, g8 & th, r8 & th])
#cv2.namedWindow("demo", cv2.WINDOW_NORMAL)
# cv2.imshow("demo", color_img)cv2.imwrite("15111.png", color_img)
#cv2.waitKey()
#cv2.destroyAllWindows()# --------------------------------------总体----------------------------------------------
import pandas as pd
#
heat = pd.read_excel('3旱棚.xlsx')
heat.columns=[i for i in range(640)]
mask = np.array(th)
heatnp = np.array(heat)
heat_result = mask*heatnp/255
heat_result_df = pd.DataFrame(heat_result)
heat_result_df.replace(0, np.nan, inplace=True)
# heat_result_df.to_excel('heat_result_df.xlsx')
heat_1_array = np.array(heat_result_df)
heat_1_array = heat_1_array.reshape(-1)
heat_1_array_pd = pd.DataFrame(heat_1_array)
heat_1_array_pd = heat_1_array_pd.dropna()
heat_1_array_pd.to_excel('绿色.xlsx')# 覆盖部分
mask_d = pd.DataFrame(mask)
mask_d=mask_d-255
heat_result_re=mask_d*heat
heat_result_re.replace(0, np.nan, inplace=True)#存去除部分
heat_1_array_re = np.array(heat_result_re)
heat_1_array_re = heat_1_array_re.reshape(-1)
heat_1_array_pd_re = pd.DataFrame(heat_1_array_re)
heat_1_array_pd_re = heat_1_array_pd_re.dropna()
heat_1_array_pd_re.to_excel('黑色.xlsx')

红外部分仅输出绿色部分的热量数据,没有显示图
结果图如下在这里插入图片描述
在这里插入图片描述

二、计算冠层覆盖度

以第二种方法为例

import cv2
import numpy as np
# 第二种------------------------------------------------------------------
demo = cv2.imread('743dbf4d5db8d8177de00c60a92e8f5.jpg')
# 使用2g-r-b分离土壤与背景
# 转换为浮点数进行计算
demo1 = np.array(demo, dtype=np.float32) / 255.0
(b, g, r) = cv2.split(demo1)
gray = 2.4 * g - b - r
# 求取最大值和最小值
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
# 转换为u8类型,进行otsu二值化
gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8)
(thresh, th) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
# 计算绿色植被和所有像素点的比值
print('冠层覆盖度为', round(sum(sum(th/255))/(len(th[0])*len(th))*100, 2), '%')
# 得到彩色的图像
(b8, g8, r8) = cv2.split(demo)
color_img = cv2.merge([b8 & th, g8 & th, r8 & th])
cv2.imshow("demo", color_img)

结果如下

Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:20:19) [MSC v.1925 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> 
=============== RESTART: C:\Users\Administrator\Desktop\冠层覆盖度.py ===============
冠层覆盖度为 53.76 %

在这里插入图片描述

在这里插入图片描述
有些比较密的地方黑色的地方效果不好,说明植被的分离仍需要改进。

这篇关于python 提取图片中绿色植被,计算冠层覆盖度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412172

相关文章

如何基于Python开发一个微信自动化工具

《如何基于Python开发一个微信自动化工具》在当今数字化办公场景中,自动化工具已成为提升工作效率的利器,本文将深入剖析一个基于Python的微信自动化工具开发全过程,有需要的小伙伴可以了解下... 目录概述功能全景1. 核心功能模块2. 特色功能效果展示1. 主界面概览2. 定时任务配置3. 操作日志演示

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

Python+PyQt5实现MySQL数据库备份神器

《Python+PyQt5实现MySQL数据库备份神器》在数据库管理工作中,定期备份是确保数据安全的重要措施,本文将介绍如何使用Python+PyQt5开发一个高颜值,多功能的MySQL数据库备份工具... 目录概述功能特性核心功能矩阵特色功能界面展示主界面设计动态效果演示使用教程环境准备操作流程代码深度解

如何Python使用设置word的页边距

《如何Python使用设置word的页边距》在编写或处理Word文档的过程中,页边距是一个不可忽视的排版要素,本文将介绍如何使用Python设置Word文档中各个节的页边距,需要的可以参考下... 目录操作步骤代码示例页边距单位说明应用场景与高级用China编程途小结在编写或处理Word文档的过程中,页边距是一个

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

使用Python和Tkinter实现html标签去除工具

《使用Python和Tkinter实现html标签去除工具》本文介绍用Python和Tkinter开发的HTML标签去除工具,支持去除HTML标签、转义实体并输出纯文本,提供图形界面操作及复制功能,需... 目录html 标签去除工具功能介绍创作过程1. 技术选型2. 核心实现逻辑3. 用户体验增强如何运行

Python如何判断字符串中是否包含特殊字符并替换

《Python如何判断字符串中是否包含特殊字符并替换》这篇文章主要为大家详细介绍了如何使用Python实现判断字符串中是否包含特殊字符并使用空字符串替换掉,文中的示例代码讲解详细,感兴趣的小伙伴可以了... 目录python判断字符串中是否包含特殊字符方法一:使用正则表达式方法二:手动检查特定字符Pytho