消防车调度问题 :用数学建模优化生产与服务运作中的管理问题

本文主要是介绍消防车调度问题 :用数学建模优化生产与服务运作中的管理问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述: 某市消防中心同时接到了三处火警电话。根据当前的火势,三处火警地点分 别需要 2 辆、2 辆和 3 辆消防车前往灭火。三处火警地点的损失将依赖于消防车到达的及时程度:记 t_{ij} 为第 j 辆消防车到达火警地点i的时间,则三处火警地点的损失分别为


  6t_{11}+4t_{12};\: 7t_{21}+3t_{22};\: \: 9t_{31}+8t_{32}+5t_{33} ; 。目前可供消防中心调度的消防车正好有 7辆,分别属于三个消防站(可用消防车数量分别为 3 辆、2 辆、2 辆)。消防车从三个消 防站到三个火警地点所需要的时间如表 6 所示。应如何调度消防车,才能使总损失最 小? 

问题二:如果三处火警地点的损失分别为4t_{11}+6t_{12};\: 3t_{21}+7 t_{22};\: \: 5t_{31}+8t_{32}+9t_{33} ;,调度方案是否需要改变?

 

(1)问题分析

本题考虑的是为每个火警地点分配消防车的问题,初步看来与线性规划中经典的运输问题有些类似。本题的问题可以看成是指派问题和运输问题的一种变形,我们下面首先把它变成一个运输问题建模求解。

(2)决策变量

为了用运输问题建模求解,我们很自然地把 3 个消防站看成供应点。如果直接把 3 个火警地点看成需求点,我们却不能很方便地描述消防车到达的先后次序,因此难以确 定损失的大小。下面我们把 7 辆车的需求分别看成 7 个需求点(分别对应于到达时间t_{11},\: t_{12},\: \: t_{21},\: t_{22},\: \: t_{31},\: t_{32},\: t_{33} . 用 x_{ij}  表示消防站i是否向第 j 个需求点派车(1 表示派车,0表示不派车),则共有 21 个  0−1 变量.

(3)模型建立

题目中给出的损失函数都是消防车到达时间的线性函数,所以由所给数据进行简 单的计算可知,如果消防站 1 向第 6 个需求点派车(即消防站 1 向火警地点 3 派车但该 消防车是到达火警地点 3 的第二辆车),则由此引起的损失为 72 98 = × 。同理计算,可以得到损失矩阵如表 7 所示(元素分别记为 c_{ij} )。 

于是,使总损失最小的决策目标为

   \textup{min}\:\: \: Z=\sum_{i=1}^{3}\sum_{j=1}^{7}c_{ij}\, x_{ij}                  ( 1 )

约束条件:

约束条件有两类,一类是消防站拥有的消防车的数量限制,另一类是 各需求点对消防车的需求量限制。 
b_{i}  ( i=1,2,3 )为第i个消防站拥有消防车的数量,则消防站拥有的消防车的数量限制可以表示为 
              \sum_{j=1}^{7} x_{ij} =b_{i} ,\: \: i=1,2,3          (  2 )

各需求点对消防车的需求量限制可以表示为 

  \sum_{i=1}^{3} x_{ij} =1 ,\: \: j=1,2,...,7         (  3 )

(4)模型求解 的lingo代码

MODEL: 
TITLE 消防车问题; 
SETS: 
supply/1..3/:b; 
need/1..7/; 
links(supply,need):c,x; 
ENDSETS 
[OBJ]Min=@sum(links:c*x); 
@FOR(supply(i):@sum(need(j):x(i,j))=b(i)); 
@FOR(need(j):@sum(supply(i):x(i,j))=1); 
DATA: 
b=3,2,2; 
c=36,24,49,21,81,72,45   30,20,56,24,99,88,55   36,24,63,27,90,80,50; 
ENDDATA 
END 

求得结果为,消防站 1 应向火警地点 2 派 1 辆车,向火警地点 3 派 2 辆车;消防站 2 应向火警地点 1 派 2 辆车;消防站 3 应向火警地点 2、3 各派 1 辆车。最小总损失 为 329。

(5)讨论

1)这个问题本质上仍然和经典的运输问题类似,可以把每辆车到达火场看做需求点,消防站看做供应点。在上面模型中,我们虽然假设 x_{ij}  为 0− 1变量,但求解时是采用线性规划求解的,也就是说没有加上 为 0− 1 变量或整数变量的限制条件,但求解得到的结果中 x_{ij}  正好是 0−1 变量。这一结果不是偶然的,而是运输问题特有的一种性质.

2 )在上面模型中,没有考虑消防车到达各火警地点的先后次序约束,但得到的结果正好满足所有的先后次序约束,这一结果不是必然的,而只是巧合。如对例题后半部 分的情形,结果就不是这样了。显然,此时只需要修改损失矩阵如表 8 所示(所示(元素仍然分别记为 c_{ij} )

此时重新将式( 1 )-( 3 ) 构成的线性规划模型输入 LINGO 求解,可以得到新的最优解: x_{14 }=x_{16 }=x_{17 }=x_{21 }=x_{22 }=x_{ 33}=x_{35 }=1其它变量为 0(最小总损失仍为 329)

实际上,损失矩阵中只是 1、2 列交换了位置,3、4 列交换了位置,5、7 列 交换了位置,因此不用重新求解就可以直接看出以上新的最优解。 

但是,以上新的最优解却是不符合实际情况的。例如,x_{14}=x_{33}=1  表明火警地点2 的第一辆消防车来自消防站 3,第二辆消防车来自消防站 1,但这是不合理的,因为 火警地点 2 与消费站 3 有 9min 的距离,大于与消防站 1 的 7min 的距离。分配给火警 地点 3 的消防车也有类似的不合理问题。为了解决这一问题,我们必须考虑消防车到达 各火警地点的先后次序约束,也就是说必须在简单的运输问题模型中增加一些新的约 束,以保证以上的不合理问题不再出现。

首先考虑火警地点 2。由于消防站 1 的消防车到达所需时间(7min)小于消防站 2 的消防车到达所需时间(8 分钟),并都小于消防站 3 的消防车到达所需时间(9 分钟), 因此火警地点 2 的第二辆消防车如果来自消防站 1,则火警地点 2 的第 1 辆消防车也一 定来自消防站 1;火警地点 2 的第 2 辆消防车如果来自消防站 2,则火警地点 2 的第 1 辆消防车一定来自消防站 1 或 2。因此,必须增加以下约束:x_{14} < x_{33}, \: x_{24}\leq x_{13} +x_{23}   (  4 )

同理,对火警地点 1,必须增加以下约束: x_{22}\leq x_{21}   (  5 )

对火警地点 3,必须增加以下约束: x_{16}\leq x_{15},\, x_{17}\leq x_{16},\: x_{36}\leq x_{15} + x_{35},\, 2x_{37}\leq x_{15} + x_{16}+ x_{35}+ x_{36}    ( 6 )

重新将式(1)~(6)构成的整数规划模型( x_{ij}  是 1 0− 变量)输入 LINGO 软件如下:

MODEL: 
TITLE 消防车问题; 
SETS: 
supply/1..3/:b; 
need/1..7/; 
links(supply,need):c,x; 
ENDSETS 
[OBJ]Min=@sum(links:c*x); 
@FOR(supply(i):@sum(need(j):x(i,j))=b(i)); 
@FOR(need(j):@sum(supply(i):x(i,j))=1); 
x(1,4)<x(1,3); 
x(2,4)<x(1,3)+x(2,3); 
x(2,2)<x(2,1); 
x(1,6)<x(1,5); 
x(1,7)<x(1,6); 
x(3,6)<x(1,5)+x(3,5); 
2*x(3,7)<x(1,5)+x(1,6)+x(3,5)+x(3,6); 
@for(links:@bin(x)); 
DATA:
b=3,2,2; 
c=  24    36    21    49    45    72    81     20    30    24    56    55    88    99     24    36    27    63    50    80    90; 
ENDDATA 
END 

求解可以得到:x_{ 13} =x_{ 14}=x_{ 15}=x_{21 }=x_{ 22}=x_{ 36}=x_{ 37}=1 ,其它变量为 0(最小总损失仍为 335)。也就是说,消防站 1 应向火警地点 2 派 2 辆车,向火警地点 3 派 1 辆车;消防站 2 应向火警地点 1 派 2 辆车;消防站 3 应向火警地点 3 派 2 辆车。经过检 验可以发现,此时的派车方案是合理的。 

这篇关于消防车调度问题 :用数学建模优化生产与服务运作中的管理问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/411580

相关文章

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制