朴素贝叶斯(NBM)之后验概率最大化的含义 | 统计学习方法

本文主要是介绍朴素贝叶斯(NBM)之后验概率最大化的含义 | 统计学习方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

朴素贝叶斯 - 贝叶斯估计Python复现:

[舟晓南:朴素贝叶斯(Bayes)模型python复现 - 贝叶斯估计;下溢出问题]

在《统计学习方法》一书中,详细说明了后验概率最大化与期望风险最小化之间的关系,深入地说明了后验概率最大化的含义,但其中的推导过程有所省略,这篇文章作为补充说明。

后验概率最大化的含义:

书中提到,朴素贝叶斯法将实例分到后验概率最大的类中,这等价于期望风险最小化。

要明白什么是期望风险最小化,首先要明白什么是期望。

期望是指某件事大量发生后的平均结果,反应了随机变量平均取值的大小。计算期望的公式:

 
其中x为X的取值,p为在X为该取值的概率,K为x可取值的数量。

期望与平均值之间的关系:

ter)

 
其中N是实例总数,n是X为x取值时的实例数量。

举个例子,在10户人家中有3户拥有1个孩子,有3户拥有2个孩子,有4户拥有3个孩子,则其期望为:


即对家庭的期望是每个家庭有2.1个孩子。

说回期望风险,按照书中的定义,期望风险的含义是:模型关于联合分布的期望损失,学习的目标就是选择期望风险最小的模型。

既然期望风险就是期望损失,那么我们需要定义一个损失函数,用来判断模型的好坏。

假设我们在朴素贝叶斯分类器中使用0-1损失函数:

 
其中f(X)就是习得的朴素贝叶斯模型。

那么期望风险代表的就是损失的平均值,函数为:


因为期望的定义是值出现的概率乘以具体值之和,所以上式可转换为损失函数与联合概率之积的积分:


在上式的转换中运用了联合概率,边缘概率和条件概率的关系。
我们设 为H(x)。

H(x)中损失函数大于等于0,条件概率P(y|x)大于0,因此H(x)大于0。同时P(x)也大于0,且当X=x时P(x)(先验概率)为常数,因此期望风险最小化可转换为条件期望最小化,即argminH(x)

 
上式的第二个等式成立,是因为损失函数表示当分类错误时取1,那么我们只需要最小化分类错误的概率,也就是最小化 。

上式最后推导出在朴素贝叶斯分类器中,期望风险最小化等价于后验概率最大化。

  


同名公众号和知乎:舟晓南

对机器学习,深度学习,python感兴趣,欢迎关注专栏,学习笔记已原创70+篇,持续更新中~ ^_^

学习笔记:数据分析,机器学习,深度学习​https://www.zhihu.com/column/c_1274454587772915712

专栏文章举例:

【机器学习】关于逻辑斯蒂回归,看这一篇就够了!解答绝大部分关于逻辑斯蒂回归的常见问题,以及代码实现 - 知乎 (zhihu.com)

关于 python 二三事​https://www.zhihu.com/column/c_1484952401395941377

专栏文章举例:

记录一下工作中用到的少有人知的pandas骚操作,提升工作效率 - 知乎 (zhihu.com)

关于切片时不考虑最后一个元素以及为什么从0开始计数的问题 - 知乎 (zhihu.com)

关于转行:

舟晓南:如何转行和学习数据分析 | 工科生三个月成功转行数据分析心得浅谈

舟晓南:求职数据分析师岗位,简历应该如何写?|工科生三个月成功转行数据分析心得浅谈


我建了个数据分析,机器学习,深度学习的群~ 需要学习资料,想要加入社群均可私信~

在群里我会不定期分享各种数据分析相关资源,技能学习技巧和经验等等~

详情私信,一起进步吧!

这篇关于朴素贝叶斯(NBM)之后验概率最大化的含义 | 统计学习方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/411080

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数