【轴承RUL预测代码】基于DRSN(深度残差收缩网络)

2023-11-22 14:59

本文主要是介绍【轴承RUL预测代码】基于DRSN(深度残差收缩网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DRSN(深度残差收缩网络)和完整Transformer(encoder+decoder)

  • DRSN(深度残差收缩网络)
    • 模型的代码
    • 模型的打印
    • 训练与预测
      • 训练集的可视化:
      • 测试集的可视化:
    • DRSN-TCN的效果

DRSN(深度残差收缩网络)

此次模型是应一位网友提出,怎么将其应用到我们的RUL预测领域中。当时候提出需求的时候,我也不太懂,后面花了两三天写出来了基础代码(就是模型个部分结构基本是固定),后续有花了2天时间修改出来了。比如构建DRSN的Block结构,DRSN与TCN的结合等等。下面参照一些博客大佬写的内容1234

模型的代码


class DRSN(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(DRSN, self).__init__()self.resnet1 = ResNetBlock(input_size, hidden_size)self.resnet2 = ResNetBlock(hidden_size, hidden_size)self.resnet3 = ResNetBlock(hidden_size, hidden_size)self.soft_threshold = SoftThreshold(hidden_size)self.attention = Attention(hidden_size)self.linear = nn.Linear(hidden_size, output_size)def forward(self, x):x = self.resnet1(x)x = self.resnet2(x)x = self.resnet3(x)x = self.soft_threshold(x)x = self.attention(x)x = self.linear(x)return xclass ResNetBlock(nn.Module):def __init__(self, in_channels, out_channels):super(ResNetBlock, self).__init__()self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1)self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1)self.bn1 = nn.BatchNorm1d(out_channels)self.bn2 = nn.BatchNorm1d(out_channels)self.relu = nn.ReLU()def forward(self, x):identity = xx = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)x += identityx = self.relu(x)return xclass SoftThreshold(nn.Module):def __init__(self, num_features):super(SoftThreshold, self).__init__()# 初始化阈值学习参数self.thresholds = nn.Parameter(torch.zeros(num_features))def forward(self, x):x = torch.sign(x) * torch.max(torch.abs(x) - self.thresholds, torch.zeros_like(x))return xclass Attention(nn.Module):def __init__(self, hidden_size):super(Attention, self).__init__()self.linear = nn.Linear(hidden_size, 1)def forward(self, x):# 计算注意力权重weights = self.linear(x)weights = torch.softmax(weights, dim=1)# 添加注意力权重x = x * weightsreturn x

模型的打印

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
DRSN                                     [128, 1]                  --
├─ResNetBlock: 1-1                       [128, 128, 16]            --
│    └─Conv1d: 2-1                       [128, 128, 16]            25,472
│    └─BatchNorm1d: 2-2                  [128, 128, 16]            256
│    └─ReLU: 2-3                         [128, 128, 16]            --
│    └─Conv1d: 2-4                       [128, 128, 16]            49,280
│    └─BatchNorm1d: 2-5                  [128, 128, 16]            256
│    └─Conv1d: 2-6                       [128, 128, 16]            8,576
│    └─LeakyReLU: 2-7                    [128, 128, 16]            --
├─ResNetBlock: 1-2                       [128, 32, 16]             --
│    └─Conv1d: 2-8                       [128, 32, 16]             12,320
│    └─BatchNorm1d: 2-9                  [128, 32, 16]             64
│    └─ReLU: 2-10                        [128, 32, 16]             --
│    └─Conv1d: 2-11                      [128, 32, 16]             3,104
│    └─BatchNorm1d: 2-12                 [128, 32, 16]             64
│    └─Conv1d: 2-13                      [128, 32, 16]             4,128
│    └─LeakyReLU: 2-14                   [128, 32, 16]             --
├─ResNetBlock: 1-3                       [128, 16, 16]             --
│    └─Conv1d: 2-15                      [128, 16, 16]             1,552
│    └─BatchNorm1d: 2-16                 [128, 16, 16]             32
│    └─ReLU: 2-17                        [128, 16, 16]             --
│    └─Conv1d: 2-18                      [128, 16, 16]             784
│    └─BatchNorm1d: 2-19                 [128, 16, 16]             32
│    └─Conv1d: 2-20                      [128, 16, 16]             528
│    └─LeakyReLU: 2-21                   [128, 16, 16]             --
├─SoftThreshold: 1-4                     [128, 16, 16]             16
├─Attention: 1-5                         [128, 16, 16]             --
│    └─Linear: 2-22                      [128, 16, 1]              17
├─Linear: 1-6                            [128, 1]                  17
├─Sigmoid: 1-7                           [128, 1]                  --
==========================================================================================
Total params: 106,498
Trainable params: 106,498
Non-trainable params: 0
Total mult-adds (M): 216.66
==========================================================================================
Input size (MB): 0.54
Forward/backward pass size (MB): 14.70
Params size (MB): 0.43
Estimated Total Size (MB): 15.66
==========================================================================================

最后还有与TCN的结合

===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
DRSN                                          [128, 1]                  --
├─TemporalConvNet: 1-1                        [128, 32, 16]             --
│    └─Sequential: 2-1                        [128, 32, 16]             --
│    │    └─TemporalBlock: 3-1                [128, 64, 16]             33,984
│    │    └─TemporalBlock: 3-2                [128, 32, 16]             13,920
│    │    └─TemporalBlock: 3-3                [128, 32, 16]             9,280
├─SoftThreshold: 1-2                          [128, 16, 32]             32
├─Attention: 1-3                              [128, 16, 32]             --
│    └─Linear: 2-2                            [128, 16, 1]              33
├─Linear: 1-4                                 [128, 1]                  33
├─Sigmoid: 1-5                                [128, 1]                  --
===============================================================================================
Total params: 57,282
Trainable params: 57,282
Non-trainable params: 0
Total mult-adds (M): 114.99
===============================================================================================
Input size (MB): 0.54
Forward/backward pass size (MB): 12.60
Params size (MB): 0.23
Estimated Total Size (MB): 13.37
===============================================================================================

训练与预测

这还是以PHM2012轴承的工况一的七个轴承为例,Bearing1-1和Beanring1-2做训练,后面Bearing1-3到Bearing15这五个做预测.,使用的特征还是之前的示例数据EMD分解后的IMF分量的6个统计特征。

训练集的可视化:

Bearing1-1
请添加图片描述

测试集的可视化:

请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

DRSN-TCN的效果

训练集可视化:
请添加图片描述

请添加图片描述
请添加图片描述
洽谈轴承效果还是比较差,这里就不放图了。总体来说,还是需要对DRSN与TCN的结合进行优化。


  1. 深度残差收缩网络(DRSN ↩︎

  2. 深度残差收缩网络:一种面向强噪声数据的深度学习方法 ↩︎

  3. 残差网络?收缩?深度残差收缩网络看这篇就够了 ↩︎

  4. 另类注意力机制之深度残差收缩网络(附代码) ↩︎

这篇关于【轴承RUL预测代码】基于DRSN(深度残差收缩网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410959

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶