基础概念——TP、FP、TN、FN、IOU、PR、AP、Interpolated AP、AUC、mAP

2023-11-22 14:10

本文主要是介绍基础概念——TP、FP、TN、FN、IOU、PR、AP、Interpolated AP、AUC、mAP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TP、FP、TN、FN

都是站在预测的立场看的:
TP:预测为正是正确的
FP:预测为正是错误的
TN:预测为负是正确的
FN:预测为负是错误的

在这里插入图片描述

准确率(accuracy),精确率(Precision)和召回率(Recall)

准确度:分类器正确分类的样本数与总样本数之比
(TP+TN)/ (TP+TN+FP+FN)
精准率Precision:所有被预测为正样本的样本中预测对的比例
(TP) / (TP+NP)
召回率Recall:被正确预测的正样本占所有正样本的比例
(TP)/ (TP+FN)

Precision就代表我们模型检测出来的目标有多大比例是真正的目标物体,是从检测出的目标的角度来看待问题;
Recall就代表所有真实的目标有多大比例被我们的模型检测出来了,是从数据集中奔雷就存在的目标的角度来看待问题。

PR曲线

我们希望Precision 和 Recall 都越高越好,但是实际情况下,我们不可能满足Precision 和 Recall 都很大。
比如在极端情况下,检测模型只检测出来一个目标,而且检测正确了,那么Precision为100%,但是Recall却很小;
但是如果我们把所有的结果都返回,那么Recall 就很大,但是Precison却很小。

在不同的场合,我们对 Precision 和 Recall 有不同的要求,可以结合PR曲线进行分析。

假设我们的数据集中有5个目标,目标检测模型检测出10个候选框,我们按照置信度的顺序对候选框进行排列。

在这里插入图片描述
第二列为候选框是否检测正确,也就是是否存在目标框和这个候选框的交并比大于阈值0.5。
第三、四列为当以同行的候选框的置信度为阈值时(大于这个阈值的候选框就预测为正样本),求取的Precision和Recall

第一行:
TP 为1 ; FN为4
FP 为0;

Precision = 1/1=1
Recall = 1/(1+4) = 0.2

第二行:
TP 为2 ; FN为3
FP 为0;

Precision = 2/2=1
Recall = 2/(2+3) = 0.4

第三行:
TP 为2 ; FN为3
FP 为1;

Precision = 2/(2+1)=0.67
Recall = 2/(2+3) = 0.4

下面的案例更加具体:
在这里插入图片描述

上面七张图每张图片的检测结果均已标出,绿色是Ground Truth,红色是检测到的对象(总共24个,A~Y)。对上面的所有检测结果按照confidence排名统计出一个表如下:

在这里插入图片描述

由上表以Recall值为横轴,Precision值为纵轴,我们就可以得到PR曲线。我们会发现,Precision与Recall的值呈现负相关,在局部区域会上下波动。(实际计算时,当Precision下降到一定程度时,后面就直接默认为0,不算了。):

在这里插入图片描述

AP

上图PR曲线下的面积就定义为AP,即:

在这里插入图片描述

上面就是AP的基本思想,实际计算过程中,PASCAL VOC,COCO比赛在上述基础上都有不同的调整策略。

Interpolated AP(PASCAL VOC 2008的评测指标)

在PASCAL VOC 2008中,在计算AP之前会对上述曲线进行平滑,平滑方法为,对每一个Precision值,使用其右边最大的Precision值替代。
在这里插入图片描述

具体示意图如下:

在这里插入图片描述
通过平滑策略,上面蓝色的PR曲线就变成了红色的虚线了。平滑的好处在于,平滑后的曲线单调递减,不会出现摇摆的情况。这样的话,随着Recall的增大,Precision逐渐降低,这才是符合逻辑的。实际计算时,对平滑后的Precision曲线进行均匀采样出11个点(每个点间隔0.1),然后计算这11个点的平均Precision。具体如下:(实际计算时,当Precision下降到一定程度时,后面就直接默认为0,所以最后6个点取0):

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在本例子中,

在这里插入图片描述这种计算方法也叫插值AP(Interpolated AP)。对于PASCAL VOC有20个类别,那么mAP就是对20个类别的AP进行平均。

Area under curve AUC,PASCAL VOC2010–2012评测指标

上述11点插值的办法由于插值点数过少,容易导致结果不准。一个解决办法就是内插所有点。所谓内插所有点,其实就是对上述平滑之后的曲线算曲线下面积。

这样计算之所以会更准确一点,可以这么看!原先11点采样其实算的是曲线下面积的近似,具体近似办法是:取10个宽为0.1,高为Precision的小矩形的面积平均。现在这个则不然,现在这个算了无数个点的面积平均,所以结果要准确一些。

在这里插入图片描述

示意图如下:

在这里插入图片描述
在本例中,

在这里插入图片描述

COCO mAP

COCO mAP使用101个点的内插mAP(Interpolated AP),此外,COCO还使用了不同IOU阈值,不同尺度下的AP平均来作为评测结果,比如AP @ [.5 : .95]对应于IoU的平均AP,从0.5到0.95,步长为0.05。下面是具体评价指标介绍:

在这里插入图片描述

再比如我们看一下YOLOv3的作者在论文中展示的在coco数据集上的实验结果

在这里插入图片描述
在这里插入图片描述
注:通常来说AP是在单个类别下的,mAP是AP值在所有类别下的均值。,值得注意的是,COCO的AP就是指mAP,没有刻意区分二者。

ImageNet目标检测评测指标

在ImageNet目标检测数据集里面则采用上面介绍的AUC方法来计算mAP。一般来说,不同的数据集mAP介绍方法会有一些细微差异。

————————

白话mAP
目标检测中的AP,mAP

这篇关于基础概念——TP、FP、TN、FN、IOU、PR、AP、Interpolated AP、AUC、mAP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410680

相关文章

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

MySQL 事务的概念及ACID属性和使用详解

《MySQL事务的概念及ACID属性和使用详解》MySQL通过多线程实现存储工作,因此在并发访问场景中,事务确保了数据操作的一致性和可靠性,下面通过本文给大家介绍MySQL事务的概念及ACID属性和... 目录一、什么是事务二、事务的属性及使用2.1 事务的 ACID 属性2.2 为什么存在事务2.3 事务

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin