低代码!小白用10分钟也能利用flowise构建AIGC| 业务问答 | 文本识别 | 网络爬虫

本文主要是介绍低代码!小白用10分钟也能利用flowise构建AIGC| 业务问答 | 文本识别 | 网络爬虫,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、与知识对话

在这里插入图片描述

二、采集网页问答

在这里插入图片描述

三、部署安装flowise

flowise工程地址:https://github.com/FlowiseAI/Flowise
flowise 官方文档:https://docs.flowiseai.com/

这里采用docker安装:

step1:克隆工程代码 (如果网络不好,下载压缩文件也是一样)

git clone  https://github.com/FlowiseAI/Flowise.git

step2:进入工程目录docker文件下复制 .env.example 内容创建 .env

关于这个文件参数说明:https://github.com/FlowiseAI/Flowise/blob/main/CONTRIBUTING-ZH.md

数据库支持 sqlite, mysql, postgres,这里我注释了数据库代码,默认则用sqlite;

如果想用mysql,postgres自己起服务也可以;注意mysql要8.0版本以上;

在这里插入图片描述
step3: 创建docker-compose-chroma.yml文件,这里是为了后续在组件当中使用向量数据库chroma

version: '3.1'services:flowise:image: flowiseai/flowiserestart: alwaysenvironment:- PORT=${PORT}- FLOWISE_USERNAME=${FLOWISE_USERNAME}- FLOWISE_PASSWORD=${FLOWISE_PASSWORD}- DEBUG=${DEBUG}- DATABASE_PATH=${DATABASE_PATH}- APIKEY_PATH=${APIKEY_PATH}- SECRETKEY_PATH=${SECRETKEY_PATH}- FLOWISE_SECRETKEY_OVERWRITE=${FLOWISE_SECRETKEY_OVERWRITE}- LOG_PATH=${LOG_PATH}- LOG_LEVEL=${LOG_LEVEL}- EXECUTION_MODE=${EXECUTION_MODE}ports:- '0.0.0.0:${PORT}:${PORT}'volumes:- ~/.flowise:/root/.flowisenetworks:- flowise_netcommand: /bin/sh -c "sleep 3; flowise start"
networks:flowise_net:name: chroma_netexternal: true

step4: 构建容器并且启动,在下图所在所示路径下构建指定yml文件

docker-compose -f docker-compose-chroma.yml up -d

在这里插入图片描述
在这里插入图片描述

此时容器已经起来了

在这里插入图片描述

四、部署安装chroma

chroma工程地址:https://github.com/chroma-core/chroma
chroma官方文档:https://docs.trychroma.com/

step1: 获取chroma工程

git clone https://github.com/chroma-core/chroma.git

step2: 进入工程路径,构建容器镜像

cd chroma
docker-compose up -d --build

step3: 确认2个服务已经成功启动

在这里插入图片描述
step4: 确认chroma在docker容器中的IP地址,比如我的是 172.19.0.2

在这里插入图片描述

五、flowise使用教程

当你按照我上面的步骤,部署启动好了服务,访问
http://localhost:3008/

注意!

  1. 启动服务,如果用openai的官方key,需要本地科学上网,否则对话会擦红石
  2. 如下内容,有很多场景可以实现,比如pdf文件识别,多组件构成,必要条件你得掌握langchain
    才能实现复杂功能开发

(1)关于flowise编排说明

flowise不同于传统的编排,比如从左往右进行,开始结束很明显

所有的链接及其开发需要有一定的langchain认知能力,可以参考我langchain专栏的文章,举例

对于创建一个chain,其实可以遵循函数开发原理

关于langchain官方文档:https://python.langchain.com/docs/get_started/introduction

![在这里插入图片描述](https://img-blog.csdnimg.cn/fc6c2bb1f1d04da5a65707a7df4458fc.png

(2)flowise 面板介绍

在这里插入图片描述

(3)简单的LLM问答

在这里插入图片描述

(4)文件问答

在这里插入图片描述

(5)向量数据库问答

在实现这个flow时候,需要提前将数据向量化到数据库,准备任意QA文档,我这里50个历史问答

在这里插入图片描述

step1 将文档构建到向量数据库

from langchain.embeddings import OpenAIEmbeddings, SentenceTransformerEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import Docx2txtLoader
import chromadb
import os
import uuidos.environ["OPENAI_API_KEY"] = '你的OpenAikey'# 加载器
loader = Docx2txtLoader(r'C:\Users\wenwenc9\Desktop\历史问题50问答.docx')
documents_source = loader.load()# 切割文件
text_splitter = RecursiveCharacterTextSplitter(chunk_size=50, chunk_overlap=20)
documents = text_splitter.split_documents(documents_source)将文件向量到数据库
client = chromadb.HttpClient(host='localhost', port=8000)
# embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
embedding_function = OpenAIEmbeddings(model="text-embedding-ada-002")# 通过langchain使用向量库
Chroma = Chroma(client=client,embedding_function=embedding_function,
)try:collection = client.create_collection(name='history-qa', embedding_function=embedding_function)print("不存在集合,创建数据库")# 为每个文档创建一个文档id,并且将文档id,元数据,文档内容添加到数据库# 为文档增加iddoc_ids = [str(uuid.uuid4()) for _ in documents]for i, _doc in enumerate(documents):_id = doc_ids[i]_doc.metadata['doc_id'] = _id  # 构建文档序号属性Chroma._collection = collection# 存储文档Chroma.add_documents(documents)
except Exception as e:collection = client.get_collection(name='history-qa', embedding_function=embedding_function)Chroma._collection = collectionprint('已经存在集合,进行查询')res = Chroma.as_retriever().invoke("历史最早的纸币是那个国家发行的?")
print(res)

step2:验证是否成功构建生成向量

import osos.environ["OPENAI_API_KEY"] = '你的key'import chromadbfrom langchain.embeddings import OpenAIEmbeddingsembedding_function = OpenAIEmbeddings()client = chromadb.HttpClient(host='localhost', port=8000)# 按名称从现有集合中获取集合对象。 如果未找到,将引发异常。
collection = client.get_collection(name="history-qa")
res = collection.peek(2)  # 返回集合中前 2 项的列表
print(res)

在这里插入图片描述

step4 在flowise服务构建 flow编排

在这里插入图片描述

(6)网页采集问答

目标地址

https://baike.baidu.com/item/%E8%83%8C%E5%BD%B1/2663983?fr=ge_ala
在这里插入图片描述

这篇关于低代码!小白用10分钟也能利用flowise构建AIGC| 业务问答 | 文本识别 | 网络爬虫的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410556

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义