【剪枝】torch-pruning的基本使用

2023-11-22 13:15

本文主要是介绍【剪枝】torch-pruning的基本使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:DepGraph: Towards Any Structural Pruning
工程:https://github.com/VainF/Torch-Pruning
算法和库的使用介绍:CVPR 2023 | DepGraph 通用结构化剪枝

1 TP的简介

该算法介绍了DepGraph 如何建模结构化剪枝中的层依赖,实现任意结构的剪枝。对应实现的库为 torch-pruning。
本篇博客对作者的介绍做一个自己的梳理和记录。

  • Torch-Pruning的简单介绍
    Torch-Pruning(TP)是一个结构化剪枝库,与现有框架(例如torch.nn.utils.prune)最大的区别在于,TP会物理地移除参数,同时自动裁剪其他依赖层。TP是一个纯 PyTorch 项目,实现了内置的计算图的追踪(Tracing)、依赖图(DepenednecyGraph, 见论文)、剪枝器等功能,同时支持 PyTorch 1.x 和 2.0 版本。
  • 用 Torch-Pruning 剪枝的好处
    假设正在对一个卷积结构化剪枝,需要减去哪些内容,具体第几个卷积核、对应的偏置、BN中对应的维度、与其直接或间接相连的层的核的channel。我们要实现剪枝,需要对不同模型定制不同的代码实现。Torch-Pruning可让实现者跳脱出对层剪枝时最具体的操作,而关注于整体剪枝的设置。

2 TP的初尝试


2.1 初步尝试

以 ResNet-18 结构化剪枝为例,对【conv1】进行剪枝,同时处理对应的bn、紧临的卷积。

from torchvision.models import resnet18
import torch_pruning as tp
import torchmodel = resnet18(pretrained=True).eval()
tp.prune_conv_out_channels(model.conv1, idxs=[0,1]) # 剪枝前两个通道
tp.prune_batchnorm_out_channels(model.bn1, idxs=[0,1]) # 尝试修复bn
tp.prune_conv_in_channels(model.layer1[0].conv1, idxs=[0,1]) # 尝试修复紧邻的conv
output = model(torch.randn(1,3,224,224)) # 尝试运行剪枝后的网络

会报错如下:问题出在残差结构上。残差的相加操作要求传入的两个tensor具有相同的空间尺寸,也就意味着剪枝后的Tensor通道数62和另一个tensor的通道数64不再匹配。
在这里插入图片描述在这里插入图片描述


2.2 使用TP对 conv1进行剪枝

手动设置DependencyGraph是Torch-Pruning框架的底层算法,设计目标就是"自动寻找耦合层",并自动化处理。
使用TP对ResNet-18的conv1进行剪枝,代码如下:

import torch
from torchvision.models import resnet18
import torch_pruning as tpmodel = resnet18(pretrained=True).eval()# 1. 构建依赖图
DG = tp.DependencyGraph()
DG.build_dependency(model, example_inputs=torch.randn(1,3,224,224))# 2. 获取与model.conv1存在依赖的所有层,并指定需要剪枝的通道索引(此处我们剪枝第[2,6,9]个通道)
group = DG.get_pruning_group( model.conv1, tp.prune_conv_out_channels, idxs=[2, 6, 9] )
print(model, group)# 3. 执行剪枝操作
if DG.check_pruning_group(group): # 避免将通道剪枝到0group.prune()
print(model, group)
output = model(torch.randn(1,3,224,224)) # 尝试运行剪枝后的网络

上述过程一共三步:

  • 1 对网络进行依赖图构建;
  • 2 选取需要剪枝的层,指定剪枝通道,获得分组group;这里的group,是所有与conv1相依赖的层。
  • 3 执行剪枝操作,按组移除通道。那剪枝过程具体操作了哪些层呢?

左图为剪枝前的conv1 的group,右图为剪枝后的conv1 的group。
怎么去看这个group呢,在下图右侧进行了简单的标注,可以发现conv1的group都会进行剪枝,从而适应conv1的卷积核的维度发生的变化
在这里插入图片描述
左图为剪枝前的resnet结构部分,右图为剪枝后的resnet结构部分。
在这里插入图片描述


2.3 使用TP对网络中每个层进行剪枝

在实际实现时,我们希望是对整个网络结构进行剪枝,而非特定的某几层,这就涉及到如何不重复地遍历网络中所有分组的问题。
DepGraph提供了接口DG.get_all_groups来实现这以目标。该接口仅实现层的分组,并不会分辨通道的重要性。该接口包含两个参数

  • ignored_layers:指定忽略 某些希望被剪枝的层。通常包括最后的分类层、以及报错的层(也可以使用其它正确的层进行替换)
  • root_module_types:指定了每个组的起始层的类型。比如想剪枝所有的卷基层,而不想剪枝全连接层,只需要只传入对应的卷积类即可。
    值得注意的是,不同层可能出现在同一分组中,Depgraph会自动去除重复分组。

下面先提前设定好需要剪枝的通道,来展示DG.get_all_groups的使用:

import torch
import torch.nn as nn
import torch_pruning as tp
from torchvision.models import resnet18model = resnet18(pretrained=True).eval()# 1. 构建依赖图
DG = tp.DependencyGraph()
DG.build_dependency(model, example_inputs=torch.randn(1,3,224,224))# 2. 获取与model.conv1存在依赖的所有层,并指定需要剪枝的通道索引(此处我们剪枝第[2,6,9]个通道)
Groups = DG.get_all_groups(ignored_layers=[model.conv1], root_module_types=[nn.Conv2d, nn.Linear])# 3. 执行剪枝操作
for group in Groups:idxs = [2,4,6] # your pruning indicesgroup.prune(idxs=idxs)print(group)output = model(torch.randn(1,3,224,224)) # 尝试运行剪枝后的网络

但该段代码剪枝,在TP实际剪枝也是较少使用,这里是展示一个剪枝底层的基本操作。

3 TP对完整网络的剪枝


3.1 常用的结构化剪枝原理

结构化和非结构化剪枝方向,已发表的有较多的论文。但在工业上较常用的为结构化剪枝。实际中最常用的结构化剪枝方法:

  • 利用权值进行filter剪枝:Pruning Filters for Efficient ConvNets
    在这张图中,我们可以找到两个卷积参数矩阵(Kernel Matrix):第一个卷积层以 x i x_i xi 作为输入,输出特征图 x i + 1 x_{i+1} xi+1;第二个卷积层以 x i + 1 x_{i+1} xi+1作为输入,生成特征图 x i + 2 x_{i+2} xi+2
    在结构化剪枝中,这两个卷基层之间存在非常直观的依赖关系,即当我们调整第一层的输出通道时,第二个卷积层的输入通道也需要相应的进行调整,这使得蓝色高亮的参数需要同时被剪枝。
    在这里插入图片描述
    此外,作者指出网络中可能存在更复杂的依赖,例如残差结构依赖:
    在这里插入图片描述
  • 利用bn进行剪枝:Learning Efficient Convolutional Networks through Network Slimming。
    在这里插入图片描述
    BN会按通道对输入特征进行归一化,使得不同的特征处于比较接近的范围内。我们将缩放因子(从批量归一化层重用)与卷积层中的每个通道相关联。稀疏正则化在训练期间被施加在这些缩放因子上,以自动识别不重要的通道。缩放因子值较小(橙色)的通道将被修剪(左侧)。修剪后,我们获得紧凑模型(右侧),然后对其进行微调,以实现与正常训练的全网络相当(甚至更高)的精度。
    在任何一个网络中,BN的scale参数都具备一定的绝对值大小(也就是不会过小),这意味着各个通道都具有不可忽略的重要性。解决这类问题的一种有效方法是使用稀疏训练,通过对scale参数施加正则化项来稀疏化一部分通道。在slimming论文中,作者对scale参数施加了一个额外的L1正则化项,从而实现了这一过程。整个流程如下所示:稀疏训练–>剪枝–>微调
    在这里插入图片描述

3.2 TP剪枝示例

网络中存在大量复杂依赖的情况下,如何进行剪枝呢?
【1】计算网络每个group中每层的重要性

  • Torch-Puning 库内置了处理依赖的功能,并提供了可扩展的接口用于自定义剪枝器。
    tp.importance.Importance 要求我们实现一个非常简单的接口 __call__
    • 入参为一个 group,包含了多个相互耦合的层。
    • 输出为一个一维的重要性的得分向量,其含义是每个通道的重要性,因此他的维度和通道数量是相同的。
      由于输入的group通常会包含多个可剪枝层,因此我们首先对这些层进行独立的重要性计算,然后通过求平均值得到最终结果。
  • Torch-Puning也提供了常用重要性评估策略:
    tp.importance.MagnitudeImportance(p=2)p=2表示使用L2正则,对每个group中的每个层的权值,独立的计算重要性 。
    tp.importance.BNScaleImportance():利用BN计算每个group中的每个层的权值的重要性
    tp.importance.GroupNormImportance():与继承于MagnitudeImportance,且没做任何的添加和修改。

【2】对网络进行剪枝

  • Torch-Pruning库定义了一个元剪枝器 tp.pruner.MetaPruner,能够完成除了重要性评估之外的所有工作。一般常在自定义的重要性评估后,执行剪枝时使用
  • Torch-Puning也提供了常用的剪枝策略
    tp.pruner.MagnitudePruner()
    tp.pruner.BNScalePruner()
    tp.pruner.GroupNormPruner() Depgraph 提出的基于全局重要性的剪枝

【3】例子
为了增加难度,这里我们对一个DenseNet模型进行剪枝。
这里只展示了稀疏训练和微调使用的位置,仅剪枝部分能够有效跑通。

import torch
import torch.nn as nn
import torch_pruning as tp
from torchvision.models import densenet121model = densenet121(pretrained=True)
example_inputs = torch.randn(1, 3, 224, 224)# 1. 使用我们上述定义的重要性评估
# imp = tp.importance.MagnitudeImportance(p=2)
# imp = tp.importance.BNScaleImportance()
imp = tp.importance.GroupNormImportance()# 2. 忽略无需剪枝的层,例如最后的分类层
ignored_layers = []
for m in model.modules():if isinstance(m, torch.nn.Linear) and m.out_features == 1000:ignored_layers.append(m) # DO NOT prune the final classifier!# 3. 初始化剪枝器
iterative_steps = 5 # 迭代式剪枝,重复5次Pruning-Finetuning的循环完成剪枝。  
# pruner = tp.pruner.MagnitudePruner(
# pruner = tp.pruner.BNScalePruner(
pruner = tp.pruner.GroupNormPruner(model,example_inputs, # 用于分析依赖的伪输入importance=imp, # 重要性评估指标iterative_steps=iterative_steps, # 迭代剪枝,设为1则一次性完成剪枝ch_sparsity=0.5, # 目标稀疏性,这里我们移除50%的通道 ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}ignored_layers=ignored_layers, # 忽略掉最后的分类层
)# 4. 稀疏训练(为了节省时间我们假装在训练,实际应用时只需要在optimizer.step前插入regularize即可)
for _ in range(100):pass# optimizer.zero_grad() # ...# loss.backward()# pruner.regularize(model, reg=1e-5) # <== 插入该行进行稀疏化# optimizer.step()# 4. Pruning-Finetuning的循环
base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
for i in range(iterative_steps):pruner.step() # 执行裁剪,本例子中我们每次会裁剪10%,共执行5次,最终稀疏度为50%macs, nparams = tp.utils.count_ops_and_params(model, example_inputs)print("  Iter %d/%d, Params: %.2f M => %.2f M" % (i+1, iterative_steps, base_nparams / 1e6, nparams / 1e6))print("  Iter %d/%d, MACs: %.2f G => %.2f G"% (i+1, iterative_steps, base_macs / 1e9, macs / 1e9))# finetune your model here# finetune(model)# ...
print(model)

这篇关于【剪枝】torch-pruning的基本使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410400

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV