DAX教程:篮子分析2.0

2023-11-22 09:30
文章标签 分析 教程 2.0 dax 篮子

本文主要是介绍DAX教程:篮子分析2.0,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者|Davis Zhang 编译|VK 来源|Towards Data Science

本文旨在利用DAX分析Power-BI中的客户购买行为,并深入了解产品潜力。

几年前,Marco Russo和Alberto Ferrari发表了一篇名为“篮子分析”的博客

https://www.daxpatterns.com/basket-analysis/

这篇有趣的文章详细描述了如何使用DAX计算任何产品组合下的订单数量和客户数量等非常有用的指标。本文可以看作是“篮子分析”的一个扩展,它考虑了顾客购买不同产品的时间顺序。

与原始的“篮子分析”相比

假设A和B代表两种不同的产品,那么“篮子分析”计算P(AB),而本文计算P(A|B)和P(B|A)。你可以比较下面的两个数字:

上图是“篮子分析”中“两种产品都有顾客”的衡量标准,显示72位顾客同时拥有“瓶笼”和“自行车架”的购买记录。

但是,下图中显示的数据考虑了客户购买产品的时间顺序。你可以发现,先购买自行车架后购买瓶、笼的客户有8家,先购买瓶、笼后购买自行车架的客户有14家(注:暂时不考虑同时购买A、B的情况)

为什么这个分析有意义

客户的订单记录反映了一些非常有用的事实,为产品之间的相关性提供了方向。换言之,“购物篮分析”在分析超市数据时非常有用,因为顾客通常在购物时选择多种产品,然后到收银台一起下订单。

在这种情况下,所有产品都被视为同时订购。但事实上,在超市购物过程中,顾客选择的不同产品的记录是无法追踪的。

但如果是在其他情况下,比如客户在电子商务平台或官网上下单,如果你是店长,你可能想知道A和B是最畅销的车型,哪一款可以带来更多的回头客,哪一款更容易流失客户。

因此,我们需要知道每种产品的回购百分比。例如,所有先购买产品A的顾客,未来会有多少人再回来购买产品,进一步分析,在这些人中,购买的仍然是产品A或其他产品?各占多少比例,这是一个值得研究的问题。

计算过程

经过计算过程,我们最终将得到如下图所示的计算结果(注:我使用与“篮子分析”相同的数据集):

如前所述,它显示了哪些客户先购买了产品A并有后续的购买记录,他们中有多少人购买了产品B或产品C等。

因此,为了达到这个计算结果,这里有五个步骤:

1.首先,对销售表中的所有订单进行分类,在客户的所有订单中,一个或多个订单日期最早的订单被分类为第一个订单,其余的为“非第一”:

IsFirstOrder = 
VAR
E_Date = 'Sales'[OrderDateKey]
VAR
CUST = 'Sales'[CustomerKey]
RETURN
IF(SUMX(FILTER('Sales',CUST = 'Sales'[CustomerKey]&&E_Date > 'Sales'[OrderDateKey]),COUNTROWS('Sales'))>0,FALSE,TRUE)

2.过滤销售中所有产品A的订单数据,然后进一步过滤哪些订单被标记为客户的第一个订单。我们在此过滤表中提取客户列表,并向其添加一个名为“ROWS”的虚拟列,得到虚拟表VT1。

3.使用Sales作为主表,并使用NATURALLEFTOUTERJOIN()与虚拟表“VT1”关联,然后使用filter()排除[ROWS]值不等于1的行,其余数据(VT2)是“VT1”返回的所有客户的所有订单。最后,对除“一阶”外的所有订单进一步过滤数据,结果命名为“CustDistinctValue”:

CustDistinctValue = 
VAR
FIRSTORDERPROD = 
IF(HASONEVALUE('Product'[Subcategory]),VALUES('Product'[Subcategory]),0)
VAR
VT1 = 
SUMMARIZE(FILTER(Sales,AND(related('Product'[Subcategory]) = FIRSTORDERPROD,'Sales'[IsFirstOrder]=TRUE)),'Sales'[CustomerKey],"ROWS",DISTINCTCOUNT(Sales[CustomerKey]))
VAR
VT2 = 
FILTER(NATURALLEFTOUTERJOIN(ALL(Sales),VT1),[ROWS] = 1)
RETURN
CALCULATE(DISTINCTCOUNT('Sales'[CustomerKey]),FILTER(VT2,'Sales'[IsFirstOrder] = FALSE)
)

4.之后,我们需要确保这些数据可以按产品进行过滤(在这种情况下,我们只使用子类别)。这里与宏的计算方法基本相同,使用产品表(Filter product)和主表的副本建立非活动关系,然后创建一个度量值,以便其上下文忽略产品表的所有字段,并从其副本(Filter product)接受上下文。

CustPurchaseOthersSubcategoryAfter = 
VAR CustPurchaseOthersSubcategoryAfter = 
CALCULATE ('Sales'[CustDistinctValue],CALCULATETABLE (SUMMARIZE ( Sales, Sales[CustomerKey] ),'Sales'[IsFirstOrder] = FALSE,ALLSELECTED ('Product'),USERELATIONSHIP ( Sales[ProductCode],'Filter Product'[Filter ProductCode] ))
)
RETURN
IF(NOT([SameSubCategorySelection]),CustPurchaseOthersSubcategoryAfter)

注:“SameSubCategorySelection”用于排除选择相同子类别的数据。此公式还使用宏的方法来完成:

SameSubCategorySelection = 
IF (HASONEVALUE ( 'Product'[Subcategory] )&& HASONEVALUE ( 'Filter Product'[Filter Subcategory] ),IF (VALUES ( 'Product'[Subcategory])= VALUES ( 'Filter Product'[Filter Subcategory] ),TRUE)
)

5.现在,我们已经计算出购买产品A的客户中有多少人首先购买了其他产品,现在我们需要计算出这些客户占购买产品A的客户总数的比例,然后才有购买记录。以下是计算该比例分母的代码。

AsFirstOrderCust = 
VAR
FIRSTORDERPROD = 
IF(HASONEVALUE('Product'[Subcategory]),VALUES('Product'[Subcategory]),0)
VAR
VT1 = 
SUMMARIZE(FILTER(Sales,AND(RELATED('Product'[Subcategory]) = FIRSTORDERPROD,'Sales'[IsFirstOrder]=TRUE)),'Sales'[CustomerKey]
)
return
CALCULATE(DISTINCTCOUNT('Sales'[CustomerKey]),VT1)
-------------------------------------------------------------------------------
IsLastOrder = 
VAR
E_Date = 'Sales'[OrderDateKey]
VAR
CUST = 'Sales'[CustomerKey]
RETURN
IF(SUMX(FILTER('Sales',CUST = 'Sales'[CustomerKey]&&E_Date < 'Sales'[OrderDateKey]),COUNTROWS('Sales'))>0,"F","T")
-------------------------------------------------------------------------------
AsFirstOrderCustRepurchase = 
CALCULATE('Sales'[AsFirstOrderCust],'Sales'[IsLastOrder] = "F")

现在我们得到了最终的结果:CustPurchaseOthersSubCategoryAfter %,这个度量的名称很长,因为它的逻辑很复杂,就像上面的计算过程一样。

CustPurchaseOthersSubCategoryAfter % = 
DIVIDE ( 'Sales'[CustPurchaseOthersSubcategoryAfter],'Sales'[AsFirstOrderCustRepurchase])

最终结果

最后,我们将成功获得如下的最终结果,并选择使用名为“CHORD”的自定义视觉效果将其可视化。

如你所见,首先购买公路自行车的顾客中,1853人后来购买了山地自行车,而有趣的是,只有200名顾客在购买了山地自行车之后购买了公路自行车。

附上了PBIX文件,如果你有兴趣的话可以在这里下载。

https://1drv.ms/u/s!AjpQa2fseaxaoDLeh4yBlBSaa-qx

原文链接:https://towardsdatascience.com/explore-the-potential-of-products-through-customers-purchase-behaviour-in-power-bi-basket-a1f77e8a2bf6

欢迎关注磐创AI博客站: http://panchuang.net/

sklearn机器学习中文官方文档: http://sklearn123.com/

欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/

这篇关于DAX教程:篮子分析2.0的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/409165

相关文章

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser