DAX教程:篮子分析2.0

2023-11-22 09:30
文章标签 分析 教程 2.0 dax 篮子

本文主要是介绍DAX教程:篮子分析2.0,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者|Davis Zhang 编译|VK 来源|Towards Data Science

本文旨在利用DAX分析Power-BI中的客户购买行为,并深入了解产品潜力。

几年前,Marco Russo和Alberto Ferrari发表了一篇名为“篮子分析”的博客

https://www.daxpatterns.com/basket-analysis/

这篇有趣的文章详细描述了如何使用DAX计算任何产品组合下的订单数量和客户数量等非常有用的指标。本文可以看作是“篮子分析”的一个扩展,它考虑了顾客购买不同产品的时间顺序。

与原始的“篮子分析”相比

假设A和B代表两种不同的产品,那么“篮子分析”计算P(AB),而本文计算P(A|B)和P(B|A)。你可以比较下面的两个数字:

上图是“篮子分析”中“两种产品都有顾客”的衡量标准,显示72位顾客同时拥有“瓶笼”和“自行车架”的购买记录。

但是,下图中显示的数据考虑了客户购买产品的时间顺序。你可以发现,先购买自行车架后购买瓶、笼的客户有8家,先购买瓶、笼后购买自行车架的客户有14家(注:暂时不考虑同时购买A、B的情况)

为什么这个分析有意义

客户的订单记录反映了一些非常有用的事实,为产品之间的相关性提供了方向。换言之,“购物篮分析”在分析超市数据时非常有用,因为顾客通常在购物时选择多种产品,然后到收银台一起下订单。

在这种情况下,所有产品都被视为同时订购。但事实上,在超市购物过程中,顾客选择的不同产品的记录是无法追踪的。

但如果是在其他情况下,比如客户在电子商务平台或官网上下单,如果你是店长,你可能想知道A和B是最畅销的车型,哪一款可以带来更多的回头客,哪一款更容易流失客户。

因此,我们需要知道每种产品的回购百分比。例如,所有先购买产品A的顾客,未来会有多少人再回来购买产品,进一步分析,在这些人中,购买的仍然是产品A或其他产品?各占多少比例,这是一个值得研究的问题。

计算过程

经过计算过程,我们最终将得到如下图所示的计算结果(注:我使用与“篮子分析”相同的数据集):

如前所述,它显示了哪些客户先购买了产品A并有后续的购买记录,他们中有多少人购买了产品B或产品C等。

因此,为了达到这个计算结果,这里有五个步骤:

1.首先,对销售表中的所有订单进行分类,在客户的所有订单中,一个或多个订单日期最早的订单被分类为第一个订单,其余的为“非第一”:

IsFirstOrder = 
VAR
E_Date = 'Sales'[OrderDateKey]
VAR
CUST = 'Sales'[CustomerKey]
RETURN
IF(SUMX(FILTER('Sales',CUST = 'Sales'[CustomerKey]&&E_Date > 'Sales'[OrderDateKey]),COUNTROWS('Sales'))>0,FALSE,TRUE)

2.过滤销售中所有产品A的订单数据,然后进一步过滤哪些订单被标记为客户的第一个订单。我们在此过滤表中提取客户列表,并向其添加一个名为“ROWS”的虚拟列,得到虚拟表VT1。

3.使用Sales作为主表,并使用NATURALLEFTOUTERJOIN()与虚拟表“VT1”关联,然后使用filter()排除[ROWS]值不等于1的行,其余数据(VT2)是“VT1”返回的所有客户的所有订单。最后,对除“一阶”外的所有订单进一步过滤数据,结果命名为“CustDistinctValue”:

CustDistinctValue = 
VAR
FIRSTORDERPROD = 
IF(HASONEVALUE('Product'[Subcategory]),VALUES('Product'[Subcategory]),0)
VAR
VT1 = 
SUMMARIZE(FILTER(Sales,AND(related('Product'[Subcategory]) = FIRSTORDERPROD,'Sales'[IsFirstOrder]=TRUE)),'Sales'[CustomerKey],"ROWS",DISTINCTCOUNT(Sales[CustomerKey]))
VAR
VT2 = 
FILTER(NATURALLEFTOUTERJOIN(ALL(Sales),VT1),[ROWS] = 1)
RETURN
CALCULATE(DISTINCTCOUNT('Sales'[CustomerKey]),FILTER(VT2,'Sales'[IsFirstOrder] = FALSE)
)

4.之后,我们需要确保这些数据可以按产品进行过滤(在这种情况下,我们只使用子类别)。这里与宏的计算方法基本相同,使用产品表(Filter product)和主表的副本建立非活动关系,然后创建一个度量值,以便其上下文忽略产品表的所有字段,并从其副本(Filter product)接受上下文。

CustPurchaseOthersSubcategoryAfter = 
VAR CustPurchaseOthersSubcategoryAfter = 
CALCULATE ('Sales'[CustDistinctValue],CALCULATETABLE (SUMMARIZE ( Sales, Sales[CustomerKey] ),'Sales'[IsFirstOrder] = FALSE,ALLSELECTED ('Product'),USERELATIONSHIP ( Sales[ProductCode],'Filter Product'[Filter ProductCode] ))
)
RETURN
IF(NOT([SameSubCategorySelection]),CustPurchaseOthersSubcategoryAfter)

注:“SameSubCategorySelection”用于排除选择相同子类别的数据。此公式还使用宏的方法来完成:

SameSubCategorySelection = 
IF (HASONEVALUE ( 'Product'[Subcategory] )&& HASONEVALUE ( 'Filter Product'[Filter Subcategory] ),IF (VALUES ( 'Product'[Subcategory])= VALUES ( 'Filter Product'[Filter Subcategory] ),TRUE)
)

5.现在,我们已经计算出购买产品A的客户中有多少人首先购买了其他产品,现在我们需要计算出这些客户占购买产品A的客户总数的比例,然后才有购买记录。以下是计算该比例分母的代码。

AsFirstOrderCust = 
VAR
FIRSTORDERPROD = 
IF(HASONEVALUE('Product'[Subcategory]),VALUES('Product'[Subcategory]),0)
VAR
VT1 = 
SUMMARIZE(FILTER(Sales,AND(RELATED('Product'[Subcategory]) = FIRSTORDERPROD,'Sales'[IsFirstOrder]=TRUE)),'Sales'[CustomerKey]
)
return
CALCULATE(DISTINCTCOUNT('Sales'[CustomerKey]),VT1)
-------------------------------------------------------------------------------
IsLastOrder = 
VAR
E_Date = 'Sales'[OrderDateKey]
VAR
CUST = 'Sales'[CustomerKey]
RETURN
IF(SUMX(FILTER('Sales',CUST = 'Sales'[CustomerKey]&&E_Date < 'Sales'[OrderDateKey]),COUNTROWS('Sales'))>0,"F","T")
-------------------------------------------------------------------------------
AsFirstOrderCustRepurchase = 
CALCULATE('Sales'[AsFirstOrderCust],'Sales'[IsLastOrder] = "F")

现在我们得到了最终的结果:CustPurchaseOthersSubCategoryAfter %,这个度量的名称很长,因为它的逻辑很复杂,就像上面的计算过程一样。

CustPurchaseOthersSubCategoryAfter % = 
DIVIDE ( 'Sales'[CustPurchaseOthersSubcategoryAfter],'Sales'[AsFirstOrderCustRepurchase])

最终结果

最后,我们将成功获得如下的最终结果,并选择使用名为“CHORD”的自定义视觉效果将其可视化。

如你所见,首先购买公路自行车的顾客中,1853人后来购买了山地自行车,而有趣的是,只有200名顾客在购买了山地自行车之后购买了公路自行车。

附上了PBIX文件,如果你有兴趣的话可以在这里下载。

https://1drv.ms/u/s!AjpQa2fseaxaoDLeh4yBlBSaa-qx

原文链接:https://towardsdatascience.com/explore-the-potential-of-products-through-customers-purchase-behaviour-in-power-bi-basket-a1f77e8a2bf6

欢迎关注磐创AI博客站: http://panchuang.net/

sklearn机器学习中文官方文档: http://sklearn123.com/

欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/

这篇关于DAX教程:篮子分析2.0的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/409165

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

C#实现SHP文件读取与地图显示的完整教程

《C#实现SHP文件读取与地图显示的完整教程》在地理信息系统(GIS)开发中,SHP文件是一种常见的矢量数据格式,本文将详细介绍如何使用C#读取SHP文件并实现地图显示功能,包括坐标转换、图形渲染、平... 目录概述功能特点核心代码解析1. 文件读取与初始化2. 坐标转换3. 图形绘制4. 地图交互功能缩放