LVI-SAM论文重点总结

2023-11-22 07:41
文章标签 总结 重点 论文 sam lvi

本文主要是介绍LVI-SAM论文重点总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LVI-SAM构建在因子图之上:视觉惯导系统 、 激光惯导系统

视觉惯导系统:利用激光惯导的估计来做初始化、利用激光的测量得到精度更高的深度信息

激光惯导系统:利用视觉惯导的初值来做帧间匹配、做回环检测

其中一个不工作时,另外一个可以正常工作

介绍

视觉惯导系统执行利用雷达帧恢复深度的视觉特征的跟踪,通过优化视觉重投影误差和imu测量误差的视觉里程计为激光雷达的激光匹配提供初值,并把约束加入到因子图中。

当利用imu把点云的畸变去除后,激光惯导系统检测点云的边缘和平面特征,并和保存在划窗中的features map对齐。LIS系统估计得到的系统状态可以传到VIS系统中做初始化

最后,优化得到的IMU的bias用来递推给出IMU频率的位姿。(最后落点都是imu上)

该文章贡献:

基于因子图的紧耦合的LVIO系统,实现了多传感器融合与基于场景重识别的全局优化。

通过故障检测来绕开失败的子系统,使其对传感器性能下降具有鲁棒性。

利用不同的数据集进行了完善的验证。

视觉惯导系统:视觉特征利用角点检测器,利用KLT算法进行跟踪,利用视觉里程计对其激光帧的点云得到一个稀疏的深度图完成视觉惯导初始化。

  1. 初始化:初始化的质量主要取决于两个因素:传感器的运动和IMU参数的精度

VINS在速度很小或者匀速的时候很容易初始化失败

IMU的参数包含渐变的bias和高斯白噪声影响加速度和角速度的测量

为提高VIS初始化的鲁棒性,利用LIS系统来估计系统的状态和imu的参数b,通过插值对其激光帧和视觉帧时间戳,最后把LIS得到的x、b作为VIS初始值,改善初始化的速度和鲁棒性

  1. 深度特征关联:激光雷达扫描为稀疏的点云,选取多帧重叠的得到稠密的深度图,把视觉特性和雷达点投影到以相机为圆心的单位圆上,对深度点进行降采样以极坐标的形式保存,利用KD_tree找视觉特征点最近的三个激光点,相机到视觉特征点的距离就是该特征点的深度。可能会存在遮挡、不同对象深度点不同等问题,与类似Laser-Visual-Inertial Odometry and Mapping with High Robustness and Low Drift论文中的做法一样,我们通过检查特征周围深度点之间的最大距离,如果最大距离大于2m,就不对该特征点进行数据关联。

  1. 失败检验:运动剧烈或者光照变化明显等将引起imu的bias变化很大,所以定义IMU的bias一个阈值,超过之后即认为VINS系统失效,开始重新初始化VINS系统
  2. 闭环检测:利用DBOW2来做闭环检测。

雷达惯导系统:主要有四种约束,IMU的预积分约束、视觉里程计的约束、雷达里程计的约束和闭环检测的约束加入到因子图中参与优化。激光雷达关键帧与全局特征图进行匹配,闭环检测的约束候选关键帧由VIS提供,然后通过匹配进一步优化。我们为特征图维护了一个激光雷达关键帧的滑动窗口,采取关键帧的方式进行匹配,减少计算量。

  1. 初始化:

LIS系统初始化之前,假设机器静止,IMU的噪声和bias都为0,对IMU原始值积分得到两个雷达关键帧位置和姿态信息作为scan_match作为初值。经过实验发现这种方法能在有挑战的场景(初始速度小于10m/s,角速度小于180°/s)中初始化系统。LIS系统初始化完成后,我们估计因子图中的IMU的bias,机器人的位姿。速度。然后将他们传给VIS系统中。

LIS系统初始化之后,可以通过两个途径得到scan_match初值:IMU的积分和VIS系统。无论在环境纹理丰富还是不丰富的地方,增强了初值的精度和鲁棒性。

2、失败检测:尽管激光雷达可以得到场景中很远范围内的细节,但是也会在一些场景中导致扫描匹配失败,如图6所示。我们利用On Degeneracy of Optimization-based State Estimation Problems论文中介绍的方法来检测LIS系统是不是失败了。

scan-match的非线性优化可以写成一个线性最小二乘的形式:

其中A和b是从T处的线性化获得的。当$A^TA$的最小特征值小于第一次优化迭代的阈值时,LIS报告失败,此时不会将激光雷达里程计约束添加到因子图中。可以从On Degeneracy of Optimization-based State Estimation Problems看到这些假设所基于的详细分析。

这篇关于LVI-SAM论文重点总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_51326570/article/details/119299533
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/408585

相关文章

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

Linux区分SSD和机械硬盘的方法总结

《Linux区分SSD和机械硬盘的方法总结》在Linux系统管理中,了解存储设备的类型和特性是至关重要的,不同的存储介质(如固态硬盘SSD和机械硬盘HDD)在性能、可靠性和适用场景上有着显著差异,本文... 目录一、lsblk 命令简介基本用法二、识别磁盘类型的关键参数:ROTA查询 ROTA 参数ROTA

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo