15-[LVI-SAM]分析总结

2023-11-22 07:40
文章标签 分析 总结 15 sam lvi

本文主要是介绍15-[LVI-SAM]分析总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2021SC@SDUSC

LVI-SAM分析总结

​ 这是我的LVI-SAM代码分析的最后一篇。在这一篇,我会做一个总结,对我前面的Blog做一个综述,分享在分析的过程中,我的收获。

文章目录

  • LVI-SAM分析总结
    • 1. 综述
    • 2. imageProjection
    • 3. visual_feature
    • 4. visual_odometry
    • 5. 节点交互
      • a. imageProjection
      • b. visual_feature
      • c. visual_odometry
    • 6. 收获

1. 综述

​ 在LVI-SAM的代码分析中,我负责分析lidar模块的imageProjection节点和视觉模块的visual_feature节点。后来,我又帮助小组的另外一个同学,分析visual_odometry节点。

​ 而对于我们整个小组来说,我们已经把lidar模块的所有部分完成。但可惜的是,视觉模块并没有分析所有完所有的节点,因此还没有办法把这2个模块串起来做个总结。

​ 下面,我将分别总结一下对每个节点的分析,然后,再把我的节点和其他队友分析的部分串联起来总结。最后,我会再讲述一下我的收获。

2. imageProjection

​ 该节点主要用于订阅IMU、里程计、原始lidar三个话题的信息,然后进行信息整合,筛选出有效的lidar点云,并转化成世界坐标系中,并把这个转化好的基于世界坐标系的lidar点云图发布出去。而在这里,需要分析代码,需要学会一点额外的运动学方面的知识。比如:什么是TF变换,位姿是怎么表示的,什么是仿射变换等等。而只有先弄明白这些,才能理解代码的思想。

3. visual_feature

​ 节点订阅imageProjection节点的发布的基于世界坐标系下的lidar点云图话题,获得世界坐标系下的lidar点云图,从中找到特征点,通过光流追踪算法,一直跟踪这些特征点。并结合获取到的lidar点云图,获得深度信息,重新封装并发布。同时,这里还会发布一个是否重启视觉部分的信号。

​ 而这里,虽然是视觉部分,但也用到了lidar模块的信息,需要从lidar点云图话题,去获取图像某个特征点的深度信息。而这个获取深度信息,也需要用到很多运动学的知识。比如说,怎么归一化2d特征到单位球体上。因为这个比较简单,我就没有单独去介绍,因为很多计算,都需要用到归一化。后面,还提到了k-d树,而这个,我也刚好接触过,也实现过,因此,分析起来比较舒服。

​ 但后面涉及到了图形学的东西——光流追踪算法。而理解这个算法,又需要知道什么是光流,总之这样一层层的深入,便慢慢的理解了这个节点的内容。

4. visual_odometry

​ 这个节点是我比较陌生的。因为我分析这个节点,也只分析了2周的时间,对于其中细节的实现,没有那么深究。这个节点需要订阅前面需要的visual_feature发布的带有深度信息的lidar点云图,然后还会需要订阅重启信息以及原始IMU信息,以及经过IMU预积分得到的里程计信息。最后会利用视觉特征点的信息初始化,再利用IMU,得到更精确的里程计信息。

​ 这个节点一共有3个回调函数,一个主线程。3个回调函数存储接受到的数据,主线程负责核心的计算处理,以及信息的发布。而这个主线程就用到了我们前面分析的visual_feature节点的输出——带有深度信息lidar点云图。然后,用这些信息,可以得到更精确的里程计信息。而如何计算出来的,我在之前的blog中也有分析,但很可惜,我没办法去进一步探究其中的原理,比如所IMU预积分,什么是IMU的参数PQV。

5. 节点交互

​ 下面是我的代码分析部分,和队友的节点代码分析的结合。

a. imageProjection

​ 在上面我们已经提到,这个节点订阅IMU信息,里程计信息,和原始lidar三个话题的信息。而其中,IMU信息和原始lidar信息都是直接从传感器获得的原始数据。而里程计信息则是通过visual_odometry节点获得。而visual_odometry又订阅了visual_feature的话题,而visual_feature又订阅了imageProjection的话题,而这就形成了一个环(见下图)。

​ 而这其实只是假象。因为,imageProjection并不是直接使用获得的里程计信息,而是根据时间,计算出需要的里程计信息,而计算所需要的,可能是上一个时间帧的里程计信息,因此,这个环有助于精度的提升。因为,每个时刻都会融合传感器的信息和之前的里程计信息进行计算。至于初始化,则是如果没有相关的信息,那就不用,虽然效果会差一点。

15-1

15-2

b. visual_feature

​ 这个节点只需要输入原始图像信息和imageProjection发布的基于世界坐标系的点云图。因此,和其他同学没有什么消息上的交互。至于为什么上面的图片中会发现有那么多的消息给这个节点,我也觉得很神奇,因为代码上,只订阅了2个话题。但经过研究发现,这其实是这个节点在get_depth()函数获取深度的时候,构造了一个TransformListener监听器。订阅TF话题,而很多节点又在TF上发布了信息,因此在这个图上面显示有很多TF信息传给了这个节点。

15-3

c. visual_odometry

​ 这个节点的输入除了TF信息之外,还有2个重要的信息。一个是上面提到的visual_feature节点。用来获取带有深度信息的lidar点云图。而且也会接受一个是否重启的信息,用来判断是否需要重启。除此之外,还需要订阅imuPreintegration节点的IMU话题的消息。通过阅读另外一个队友的blog,我了解到,这个节点也做了预积分处理,通过订阅原始IMU数据,用因子图优化,施加两帧之间的imu预积分量,预测每一个时刻的IMU信息。因此,通过这个消息,可以得到任意时刻的IMU的估算,从而配合计算出更加精确的里程计数据。

15-4

6. 收获

​ LVI-SAM的代码分析完,一个最直观的感受,就是明白一个复杂的工程是怎么组织起来的,至少,明白在ROS环境下,是如何组织一个项目。对于ROS来说,项目其实就是一个个节点组织而成。每个节点通过话题和消息进行交互。

​ 在完成一个项目的时候,最重要的其实不是项目的实现,而是项目的设计。在LVI-SAM中,我们可以看到,每个节点的功能十分的清晰,而且节点之间的信息交互已经在论文阶段就定义了。而且,在项目中,重要的并不是代码,而是在代码中的思想,因此,如果想要完成一个高质量的项目,首先,就要做好设计。

​ 除了有这么一个总的认识,在此期间,我还学会了很多额外的知识,特别是运动学方面的知识。从表示物体的位姿,以及不同坐标系之间的TF转换关系,到光流追踪算法等知识,都是在学习LVI-SAM中收获到的。而这,我觉得也是一个学习新知识的一个途径,可以通过想要学习的方向上的一个项目,了解到要学习这个方向需要哪些知识点,从而大致了解要学习这个方向的知识基础。通过学习LVI-SAM,我深刻地认识到,数学等理论知识是非常重要的,代码只是这些知识实现的载体!

​ 除了知识上的收获,还有技能性的收获。学会了如何去查找信息。比如说,要明白一些库函数的功能,可以从一些开源库的官方的Class Reference File去寻找函数的定义和实现,这样有助于理解函数的功能。而如果想要理解一个ROS的项目,则可以从节点的main函数开始分析,然后再从节点的回调函数入手,这样可以把握住节点的主要思想和功能。此外,还有一些C++的编写体会,如模板函数,函数传参,宏等等。

​ 最后,通过本次代码分析,我熟悉了在Linux下的项目构建流程,为之后用Linux开发项目打下了基础。

这篇关于15-[LVI-SAM]分析总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/408579

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An