【MetaLearning】有关Pytorch的元学习库higher的基本用法

2023-11-22 05:04

本文主要是介绍【MetaLearning】有关Pytorch的元学习库higher的基本用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MetaLearning】有关Pytorch的元学习库higher的基本用法

文章目录

  • 【MetaLearning】有关Pytorch的元学习库higher的基本用法
    • 1. 基本介绍
    • 2. Toy Example
    • Reference

1. 基本介绍

higher.innerloop_ctxhigher库的上下文管理器,用于创建内部循环(inner loop)的上下文,内部循环通常用于元学习场景,其中在模型参数更新的内部循环中进行一些额外的操作。

这个上下文管理器主要有五个参数:(详细请参考官方库说明)

higher.innerloop_ctx(model, opt, device=None, copy_initial_weights=True, override=None, track_higher_grads=True)
  • 第一个参数model是需要进行内部循环的模型,通常是你的元模型
  • 第二个参数opt是优化器,这是你用来更新模型参数的优化器
  • 第三个参数copy_initial_weights是一个布尔值,用于指定是否在每个内部循环之前复制初始权重,如果设置为True则表示在每个内部循环之前都会将模型的初始权重进行复制,以确保每个内部循环都从相同的初始权重开始。如果设置为False,则所有的内部循环共享相同的权重模型。
  • 第四个参数override是一个字典,例如override={'lr':lr_tensor, "momentum': momentum_tensor},用于指定在内部循环期间覆盖优化器的参数,比如在这里示例中,lr_tensormomentum_tensor是张量,用于指定内部循环期间覆盖的学习率和动量。
  • 第五个参数track_higher_grads是一个布尔值,用于跟踪更高阶的梯度,如果是True,则内部循环中计算的梯度将被跟踪以支持高阶的梯度计算,如果设置为False,则不会跟踪高阶梯度。

with语句块中,通过(fmodel, diffopt)获取内部循环的上下文。fmodel表示内部循环中的模型,diffopt表示内部循环中的优化器,在这个上下文中,你可以执行内部循环的计算和参数更新。

下面给出一个基本的使用示例,演示如何使用higher.innerloop_ctx,使用higher库需要习惯下列的转变

从通常使用pytorch的用法

model = MyModel()
opt = torch.optim.Adam(model.parameters())for xs, ys in data:opt.zero_grad()logits = model(xs)loss = loss_function(logits, ys)loss.backward()opt.step()

转变到

model = MyModel()
opt = torch.optim.Adam(model.parameters())with higher.innerloop_ctx(model, opt) as (fmodel, diffopt):for xs, ys in data:logits = fmodel(xs)  # modified `params` can also be passed as a kwargloss = loss_function(logits, ys)  # no need to call loss.backwards()diffopt.step(loss)  # note that `step` must take `loss` as an argument!,这一步相当于使用了loss.backward()和opt.step()# At the end of your inner loop you can obtain these e.g. ...grad_of_grads = torch.autograd.grad(meta_loss_fn(fmodel.parameters()), fmodel.parameters(time=0))

训练模型和执行diffopt.step 来更新fmodel之间的区别在于,fmodel不会像原始部分中的opt.step()那样就地更新参数。 相反,每次调用 diffopt.step时都会以这样的方式创建新版本的参数,即fmodel将在下一步中使用新的参数,但所有以前的参数仍会保留。

运行的原理是什么呢?举个例子,fmodelfmodel.parameters(time=0)开始迭代(这里的time=0表示就是第0次迭代),当我们调用diffopt.stepN次之后,我们可以使用fmodel.parameters(time=i)来访问,其中i可以取到1N,并且我们仍然可以访问fmodel.parameters(time=0),这个结果和迭代之前是一样的,这是为什么呢?

因为fmodel的创建依赖于参数copy_initial_weights,如果copy_initial_weights=True,那么fmodel.parameters(time=0)是从原模型clone’d别且是detach’ed(即是从原模型克隆过来并且进行分离计算图了),如果copy_initial_weights=False,那么只是进行了clone’d并没有detach‘ed。

放一段原文在这里方便大家理解

I.e. fmodel starts with only fmodel.parameters(time=0) available, but after you called diffopt.step N times you can ask fmodel to give you fmodel.parameters(time=i) for any i up to N inclusive. Notice that fmodel.parameters(time=0) doesn’t change in this process at all, just every time fmodel is applied to some input it will use the latest version of parameters it currently has.

Now, what exactly is fmodel.parameters(time=0)? It is created here and depends on copy_initial_weights. If copy_initial_weights==True then fmodel.parameters(time=0) are clone’d and detach’ed parameters of model. Otherwise they are only clone’d, but not detach’ed!

That means that when we do meta-optimization step, the original model’s parameters will actually accumulate gradients if and only if copy_initial_weights==False. And in MAML we want to optimize model’s starting weights so we actually do need to get gradients from meta-optimization step.

2. Toy Example

import torch
import torch.nn as nn
import torch.optim as optim
import higher
import numpy as npnp.random.seed(1)
torch.manual_seed(3)
N = 100
actual_multiplier = 3.5
meta_lr = 0.00001
loops = 5 # how many iterations in the inner loop we want to dox = torch.tensor(np.random.random((N,1)), dtype=torch.float64) # features for inner training loop
y = x * actual_multiplier # target for inner training loop
model = nn.Linear(1, 1, bias=False).double() # simplest possible model - multiple input x by weight w without bias
meta_opt = optim.SGD(model.parameters(), lr=meta_lr, momentum=0.)def run_inner_loop_once(model, verbose, copy_initial_weights):lr_tensor = torch.tensor([0.3], requires_grad=True)momentum_tensor = torch.tensor([0.5], requires_grad=True)opt = optim.SGD(model.parameters(), lr=0.3, momentum=0.5)with higher.innerloop_ctx(model, opt, copy_initial_weights=copy_initial_weights, override={'lr': lr_tensor, 'momentum': momentum_tensor}) as (fmodel, diffopt):for j in range(loops):if verbose:print('Starting inner loop step j=={0}'.format(j))print('    Representation of fmodel.parameters(time={0}): {1}'.format(j, str(list(fmodel.parameters(time=j)))))print('    Notice that fmodel.parameters() is same as fmodel.parameters(time={0}): {1}'.format(j, (list(fmodel.parameters())[0] is list(fmodel.parameters(time=j))[0])))out = fmodel(x)if verbose:print('    Notice how `out` is `x` multiplied by the latest version of weight: {0:.4} * {1:.4} == {2:.4}'.format(x[0,0].item(), list(fmodel.parameters())[0].item(), out[0].item()))loss = ((out - y)**2).mean()diffopt.step(loss)if verbose:# after all inner training let's see all steps' parameter tensorsprint()print("Let's print all intermediate parameters versions after inner loop is done:")for j in range(loops+1):print('    For j=={0} parameter is: {1}'.format(j, str(list(fmodel.parameters(time=j)))))print()# let's imagine now that our meta-learning optimization is trying to check how far we got in the end from the actual_multiplierweight_learned_after_full_inner_loop = list(fmodel.parameters())[0]meta_loss = (weight_learned_after_full_inner_loop - actual_multiplier)**2print('  Final meta-loss: {0}'.format(meta_loss.item()))meta_loss.backward() # will only propagate gradient to original model parameter's `grad` if copy_initial_weight=Falseif verbose:print('  Gradient of final loss we got for lr and momentum: {0} and {1}'.format(lr_tensor.grad, momentum_tensor.grad))print('  If you change number of iterations "loops" to much larger number final loss will be stable and the values above will be smaller')return meta_loss.item()print('=================== Run Inner Loop First Time (copy_initial_weights=True) =================\n')
meta_loss_val1 = run_inner_loop_once(model, verbose=True, copy_initial_weights=True)
print("\nLet's see if we got any gradient for initial model parameters: {0}\n".format(list(model.parameters())[0].grad))print('=================== Run Inner Loop Second Time (copy_initial_weights=False) =================\n')
meta_loss_val2 = run_inner_loop_once(model, verbose=False, copy_initial_weights=False)
print("\nLet's see if we got any gradient for initial model parameters: {0}\n".format(list(model.parameters())[0].grad))print('=================== Run Inner Loop Third Time (copy_initial_weights=False) =================\n')
final_meta_gradient = list(model.parameters())[0].grad.item()
# Now let's double-check `higher` library is actually doing what it promised to do, not just giving us
# a bunch of hand-wavy statements and difficult to read code.
# We will do a simple SGD step using meta_opt changing initial weight for the training and see how meta loss changed
meta_opt.step()
meta_opt.zero_grad()
meta_step = - meta_lr * final_meta_gradient # how much meta_opt actually shifted inital weight value
# before we run inner loop third time, we update the meta parameter firstly.
meta_loss_val3 = run_inner_loop_once(model, verbose=False, copy_initial_weights=False)meta_loss_gradient_approximation = (meta_loss_val3 - meta_loss_val2) / meta_stepprint()
print('Side-by-side meta_loss_gradient_approximation and gradient computed by `higher` lib: {0:.4} VS {1:.4}'.format(meta_loss_gradient_approximation, final_meta_gradient))

结果如下

=================== Run Inner Loop First Time (copy_initial_weights=True) =================Starting inner loop step j==0Representation of fmodel.parameters(time=0): [tensor([[-0.9915]], dtype=torch.float64, requires_grad=True)]Notice that fmodel.parameters() is same as fmodel.parameters(time=0): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * -0.9915 == -0.4135
Starting inner loop step j==1Representation of fmodel.parameters(time=1): [tensor([[-0.1217]], dtype=torch.float64, grad_fn=<AddBackward0>)]Notice that fmodel.parameters() is same as fmodel.parameters(time=1): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * -0.1217 == -0.05075
Starting inner loop step j==2Representation of fmodel.parameters(time=2): [tensor([[1.0145]], dtype=torch.float64, grad_fn=<AddBackward0>)]Notice that fmodel.parameters() is same as fmodel.parameters(time=2): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * 1.015 == 0.4231
Starting inner loop step j==3Representation of fmodel.parameters(time=3): [tensor([[2.0640]], dtype=torch.float64, grad_fn=<AddBackward0>)]Notice that fmodel.parameters() is same as fmodel.parameters(time=3): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * 2.064 == 0.8607
Starting inner loop step j==4Representation of fmodel.parameters(time=4): [tensor([[2.8668]], dtype=torch.float64, grad_fn=<AddBackward0>)]Notice that fmodel.parameters() is same as fmodel.parameters(time=4): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * 2.867 == 1.196Let's print all intermediate parameters versions after inner loop is done:For j==0 parameter is: [tensor([[-0.9915]], dtype=torch.float64, requires_grad=True)]For j==1 parameter is: [tensor([[-0.1217]], dtype=torch.float64, grad_fn=<AddBackward0>)]For j==2 parameter is: [tensor([[1.0145]], dtype=torch.float64, grad_fn=<AddBackward0>)]For j==3 parameter is: [tensor([[2.0640]], dtype=torch.float64, grad_fn=<AddBackward0>)]For j==4 parameter is: [tensor([[2.8668]], dtype=torch.float64, grad_fn=<AddBackward0>)]For j==5 parameter is: [tensor([[3.3908]], dtype=torch.float64, grad_fn=<AddBackward0>)]Final meta-loss: 0.011927987982895929Gradient of final loss we got for lr and momentum: tensor([-1.6295]) and tensor([-0.9496])If you change number of iterations "loops" to much larger number final loss will be stable and the values above will be smallerLet's see if we got any gradient for initial model parameters: None=================== Run Inner Loop Second Time (copy_initial_weights=False) =================Final meta-loss: 0.011927987982895929Let's see if we got any gradient for initial model parameters: tensor([[-0.0053]], dtype=torch.float64)=================== Run Inner Loop Third Time (copy_initial_weights=False) =================Final meta-loss: 0.01192798770078706Side-by-side meta_loss_gradient_approximation and gradient computed by `higher` lib: -0.005311 VS -0.005311

Reference

Parper: Generalized Inner Loop Meta-Learning
What does the copy_initial_weights documentation mean in the higher library for Pytorch?

这篇关于【MetaLearning】有关Pytorch的元学习库higher的基本用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407707

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

SpringBoot UserAgentUtils获取用户浏览器的用法

《SpringBootUserAgentUtils获取用户浏览器的用法》UserAgentUtils是于处理用户代理(User-Agent)字符串的工具类,一般用于解析和处理浏览器、操作系统以及设备... 目录介绍效果图依赖封装客户端工具封装IP工具实体类获取设备信息入库介绍UserAgentUtils

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Java中的@SneakyThrows注解用法详解

《Java中的@SneakyThrows注解用法详解》:本文主要介绍Java中的@SneakyThrows注解用法的相关资料,Lombok的@SneakyThrows注解简化了Java方法中的异常... 目录前言一、@SneakyThrows 简介1.1 什么是 Lombok?二、@SneakyThrows

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Java中Scanner的用法示例小结

《Java中Scanner的用法示例小结》有时候我们在编写代码的时候可能会使用输入和输出,那Java也有自己的输入和输出,今天我们来探究一下,对JavaScanner用法相关知识感兴趣的朋友一起看看吧... 目录前言一 输出二 输入Scanner的使用多组输入三 综合练习:猜数字游戏猜数字前言有时候我们在

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N