【MetaLearning】有关Pytorch的元学习库higher的基本用法

2023-11-22 05:04

本文主要是介绍【MetaLearning】有关Pytorch的元学习库higher的基本用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MetaLearning】有关Pytorch的元学习库higher的基本用法

文章目录

  • 【MetaLearning】有关Pytorch的元学习库higher的基本用法
    • 1. 基本介绍
    • 2. Toy Example
    • Reference

1. 基本介绍

higher.innerloop_ctxhigher库的上下文管理器,用于创建内部循环(inner loop)的上下文,内部循环通常用于元学习场景,其中在模型参数更新的内部循环中进行一些额外的操作。

这个上下文管理器主要有五个参数:(详细请参考官方库说明)

higher.innerloop_ctx(model, opt, device=None, copy_initial_weights=True, override=None, track_higher_grads=True)
  • 第一个参数model是需要进行内部循环的模型,通常是你的元模型
  • 第二个参数opt是优化器,这是你用来更新模型参数的优化器
  • 第三个参数copy_initial_weights是一个布尔值,用于指定是否在每个内部循环之前复制初始权重,如果设置为True则表示在每个内部循环之前都会将模型的初始权重进行复制,以确保每个内部循环都从相同的初始权重开始。如果设置为False,则所有的内部循环共享相同的权重模型。
  • 第四个参数override是一个字典,例如override={'lr':lr_tensor, "momentum': momentum_tensor},用于指定在内部循环期间覆盖优化器的参数,比如在这里示例中,lr_tensormomentum_tensor是张量,用于指定内部循环期间覆盖的学习率和动量。
  • 第五个参数track_higher_grads是一个布尔值,用于跟踪更高阶的梯度,如果是True,则内部循环中计算的梯度将被跟踪以支持高阶的梯度计算,如果设置为False,则不会跟踪高阶梯度。

with语句块中,通过(fmodel, diffopt)获取内部循环的上下文。fmodel表示内部循环中的模型,diffopt表示内部循环中的优化器,在这个上下文中,你可以执行内部循环的计算和参数更新。

下面给出一个基本的使用示例,演示如何使用higher.innerloop_ctx,使用higher库需要习惯下列的转变

从通常使用pytorch的用法

model = MyModel()
opt = torch.optim.Adam(model.parameters())for xs, ys in data:opt.zero_grad()logits = model(xs)loss = loss_function(logits, ys)loss.backward()opt.step()

转变到

model = MyModel()
opt = torch.optim.Adam(model.parameters())with higher.innerloop_ctx(model, opt) as (fmodel, diffopt):for xs, ys in data:logits = fmodel(xs)  # modified `params` can also be passed as a kwargloss = loss_function(logits, ys)  # no need to call loss.backwards()diffopt.step(loss)  # note that `step` must take `loss` as an argument!,这一步相当于使用了loss.backward()和opt.step()# At the end of your inner loop you can obtain these e.g. ...grad_of_grads = torch.autograd.grad(meta_loss_fn(fmodel.parameters()), fmodel.parameters(time=0))

训练模型和执行diffopt.step 来更新fmodel之间的区别在于,fmodel不会像原始部分中的opt.step()那样就地更新参数。 相反,每次调用 diffopt.step时都会以这样的方式创建新版本的参数,即fmodel将在下一步中使用新的参数,但所有以前的参数仍会保留。

运行的原理是什么呢?举个例子,fmodelfmodel.parameters(time=0)开始迭代(这里的time=0表示就是第0次迭代),当我们调用diffopt.stepN次之后,我们可以使用fmodel.parameters(time=i)来访问,其中i可以取到1N,并且我们仍然可以访问fmodel.parameters(time=0),这个结果和迭代之前是一样的,这是为什么呢?

因为fmodel的创建依赖于参数copy_initial_weights,如果copy_initial_weights=True,那么fmodel.parameters(time=0)是从原模型clone’d别且是detach’ed(即是从原模型克隆过来并且进行分离计算图了),如果copy_initial_weights=False,那么只是进行了clone’d并没有detach‘ed。

放一段原文在这里方便大家理解

I.e. fmodel starts with only fmodel.parameters(time=0) available, but after you called diffopt.step N times you can ask fmodel to give you fmodel.parameters(time=i) for any i up to N inclusive. Notice that fmodel.parameters(time=0) doesn’t change in this process at all, just every time fmodel is applied to some input it will use the latest version of parameters it currently has.

Now, what exactly is fmodel.parameters(time=0)? It is created here and depends on copy_initial_weights. If copy_initial_weights==True then fmodel.parameters(time=0) are clone’d and detach’ed parameters of model. Otherwise they are only clone’d, but not detach’ed!

That means that when we do meta-optimization step, the original model’s parameters will actually accumulate gradients if and only if copy_initial_weights==False. And in MAML we want to optimize model’s starting weights so we actually do need to get gradients from meta-optimization step.

2. Toy Example

import torch
import torch.nn as nn
import torch.optim as optim
import higher
import numpy as npnp.random.seed(1)
torch.manual_seed(3)
N = 100
actual_multiplier = 3.5
meta_lr = 0.00001
loops = 5 # how many iterations in the inner loop we want to dox = torch.tensor(np.random.random((N,1)), dtype=torch.float64) # features for inner training loop
y = x * actual_multiplier # target for inner training loop
model = nn.Linear(1, 1, bias=False).double() # simplest possible model - multiple input x by weight w without bias
meta_opt = optim.SGD(model.parameters(), lr=meta_lr, momentum=0.)def run_inner_loop_once(model, verbose, copy_initial_weights):lr_tensor = torch.tensor([0.3], requires_grad=True)momentum_tensor = torch.tensor([0.5], requires_grad=True)opt = optim.SGD(model.parameters(), lr=0.3, momentum=0.5)with higher.innerloop_ctx(model, opt, copy_initial_weights=copy_initial_weights, override={'lr': lr_tensor, 'momentum': momentum_tensor}) as (fmodel, diffopt):for j in range(loops):if verbose:print('Starting inner loop step j=={0}'.format(j))print('    Representation of fmodel.parameters(time={0}): {1}'.format(j, str(list(fmodel.parameters(time=j)))))print('    Notice that fmodel.parameters() is same as fmodel.parameters(time={0}): {1}'.format(j, (list(fmodel.parameters())[0] is list(fmodel.parameters(time=j))[0])))out = fmodel(x)if verbose:print('    Notice how `out` is `x` multiplied by the latest version of weight: {0:.4} * {1:.4} == {2:.4}'.format(x[0,0].item(), list(fmodel.parameters())[0].item(), out[0].item()))loss = ((out - y)**2).mean()diffopt.step(loss)if verbose:# after all inner training let's see all steps' parameter tensorsprint()print("Let's print all intermediate parameters versions after inner loop is done:")for j in range(loops+1):print('    For j=={0} parameter is: {1}'.format(j, str(list(fmodel.parameters(time=j)))))print()# let's imagine now that our meta-learning optimization is trying to check how far we got in the end from the actual_multiplierweight_learned_after_full_inner_loop = list(fmodel.parameters())[0]meta_loss = (weight_learned_after_full_inner_loop - actual_multiplier)**2print('  Final meta-loss: {0}'.format(meta_loss.item()))meta_loss.backward() # will only propagate gradient to original model parameter's `grad` if copy_initial_weight=Falseif verbose:print('  Gradient of final loss we got for lr and momentum: {0} and {1}'.format(lr_tensor.grad, momentum_tensor.grad))print('  If you change number of iterations "loops" to much larger number final loss will be stable and the values above will be smaller')return meta_loss.item()print('=================== Run Inner Loop First Time (copy_initial_weights=True) =================\n')
meta_loss_val1 = run_inner_loop_once(model, verbose=True, copy_initial_weights=True)
print("\nLet's see if we got any gradient for initial model parameters: {0}\n".format(list(model.parameters())[0].grad))print('=================== Run Inner Loop Second Time (copy_initial_weights=False) =================\n')
meta_loss_val2 = run_inner_loop_once(model, verbose=False, copy_initial_weights=False)
print("\nLet's see if we got any gradient for initial model parameters: {0}\n".format(list(model.parameters())[0].grad))print('=================== Run Inner Loop Third Time (copy_initial_weights=False) =================\n')
final_meta_gradient = list(model.parameters())[0].grad.item()
# Now let's double-check `higher` library is actually doing what it promised to do, not just giving us
# a bunch of hand-wavy statements and difficult to read code.
# We will do a simple SGD step using meta_opt changing initial weight for the training and see how meta loss changed
meta_opt.step()
meta_opt.zero_grad()
meta_step = - meta_lr * final_meta_gradient # how much meta_opt actually shifted inital weight value
# before we run inner loop third time, we update the meta parameter firstly.
meta_loss_val3 = run_inner_loop_once(model, verbose=False, copy_initial_weights=False)meta_loss_gradient_approximation = (meta_loss_val3 - meta_loss_val2) / meta_stepprint()
print('Side-by-side meta_loss_gradient_approximation and gradient computed by `higher` lib: {0:.4} VS {1:.4}'.format(meta_loss_gradient_approximation, final_meta_gradient))

结果如下

=================== Run Inner Loop First Time (copy_initial_weights=True) =================Starting inner loop step j==0Representation of fmodel.parameters(time=0): [tensor([[-0.9915]], dtype=torch.float64, requires_grad=True)]Notice that fmodel.parameters() is same as fmodel.parameters(time=0): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * -0.9915 == -0.4135
Starting inner loop step j==1Representation of fmodel.parameters(time=1): [tensor([[-0.1217]], dtype=torch.float64, grad_fn=<AddBackward0>)]Notice that fmodel.parameters() is same as fmodel.parameters(time=1): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * -0.1217 == -0.05075
Starting inner loop step j==2Representation of fmodel.parameters(time=2): [tensor([[1.0145]], dtype=torch.float64, grad_fn=<AddBackward0>)]Notice that fmodel.parameters() is same as fmodel.parameters(time=2): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * 1.015 == 0.4231
Starting inner loop step j==3Representation of fmodel.parameters(time=3): [tensor([[2.0640]], dtype=torch.float64, grad_fn=<AddBackward0>)]Notice that fmodel.parameters() is same as fmodel.parameters(time=3): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * 2.064 == 0.8607
Starting inner loop step j==4Representation of fmodel.parameters(time=4): [tensor([[2.8668]], dtype=torch.float64, grad_fn=<AddBackward0>)]Notice that fmodel.parameters() is same as fmodel.parameters(time=4): TrueNotice how `out` is `x` multiplied by the latest version of weight: 0.417 * 2.867 == 1.196Let's print all intermediate parameters versions after inner loop is done:For j==0 parameter is: [tensor([[-0.9915]], dtype=torch.float64, requires_grad=True)]For j==1 parameter is: [tensor([[-0.1217]], dtype=torch.float64, grad_fn=<AddBackward0>)]For j==2 parameter is: [tensor([[1.0145]], dtype=torch.float64, grad_fn=<AddBackward0>)]For j==3 parameter is: [tensor([[2.0640]], dtype=torch.float64, grad_fn=<AddBackward0>)]For j==4 parameter is: [tensor([[2.8668]], dtype=torch.float64, grad_fn=<AddBackward0>)]For j==5 parameter is: [tensor([[3.3908]], dtype=torch.float64, grad_fn=<AddBackward0>)]Final meta-loss: 0.011927987982895929Gradient of final loss we got for lr and momentum: tensor([-1.6295]) and tensor([-0.9496])If you change number of iterations "loops" to much larger number final loss will be stable and the values above will be smallerLet's see if we got any gradient for initial model parameters: None=================== Run Inner Loop Second Time (copy_initial_weights=False) =================Final meta-loss: 0.011927987982895929Let's see if we got any gradient for initial model parameters: tensor([[-0.0053]], dtype=torch.float64)=================== Run Inner Loop Third Time (copy_initial_weights=False) =================Final meta-loss: 0.01192798770078706Side-by-side meta_loss_gradient_approximation and gradient computed by `higher` lib: -0.005311 VS -0.005311

Reference

Parper: Generalized Inner Loop Meta-Learning
What does the copy_initial_weights documentation mean in the higher library for Pytorch?

这篇关于【MetaLearning】有关Pytorch的元学习库higher的基本用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407707

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?