通过SequenceFile实现合并小文件(调优技能)

2023-11-22 02:38

本文主要是介绍通过SequenceFile实现合并小文件(调优技能),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0x00 文章内容
  • 0x01 通过SequenceFile合并小文件
          • 1. 准备工作
          • 2. 完整代码
  • 0x02 检验结果
          • 1. 启动HDFS和YARN
          • 2. 执行作业
          • 3. 查看执行结果
  • 0xFF 总结

0x00 文章内容

  1. 通过SequenceFile合并小文件
  2. 检验结果

说明:Hadoop集群中,元数据是交由NameNode来管理的,每个小文件就是一个split,会有自己相对应的元数据,如果小文件很多,则会对内存以及NameNode很大的压力,所以可以通过合并小文件的方式来进行优化。合并小文件其实可以有两种方式:一种是通过Sequence格式转换文件来合并,另一种是通过CombineFileInputFormat来实现。

此处选择SequeceFile类型是因为此格式为二进制格式,而且是key-value类型,我们在合并小文件的时候,可以利用此特性,将每个小文件的名称做为key,将每个小文件里面的内容做为value。

0x01 通过SequenceFile合并小文件

1. 准备工作

a. 我的HDFS上有四个文件:

[hadoop-sny@master ~]$ hadoop fs -ls /files/
Found 4 items
-rw-r--r--   1 hadoop-sny supergroup         39 2019-04-18 21:20 /files/put.txt
-rw-r--r--   1 hadoop-sny supergroup         50 2019-12-30 17:12 /files/small1.txt
-rw-r--r--   1 hadoop-sny supergroup         31 2019-12-30 17:10 /files/small2.txt
-rw-r--r--   1 hadoop-sny supergroup         49 2019-12-30 17:11 /files/small3.txt

内容对应如下,其实内容可以随意:

shao nai yi
nai nai yi yi
shao nai nai
hello hi hi hadoop
spark kafka shao
nai yi nai yi
hello 1
hi 1
shao 3
nai 1
yi 3
guangdong 300
hebei 200
beijing 198
tianjing 209

b. 除了在Linux上创建然后上传外,还可以直接以流的方式输入进去,如small1.txt

hadoop fs -put - /files/small1.txt

输入完后,按ctrl + D 结束输入。

2. 完整代码

a. SmallFilesToSequenceFileConverter完整代码

package com.shaonaiyi.hadoop.filetype.smallfiles;import com.shaonaiyi.hadoop.utils.FileUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;import java.io.IOException;
/*** @Author shaonaiyi@163.com* @Date 2019/12/30 16:29* @Description 通过SequenceFile合并小文件*/
public class SmallFilesToSequenceFileConverter {static class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {private Text fileNameKey;@Overrideprotected void setup(Context context) {InputSplit split = context.getInputSplit();Path path = ((FileSplit) split).getPath();fileNameKey = new Text(path.toString());}@Overrideprotected void map(NullWritable key, BytesWritable value, Context context) throws IOException, InterruptedException {context.write(fileNameKey, value);}}public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Job job = Job.getInstance(new Configuration(), "SmallFilesToSequenceFileConverter");job.setJarByClass(SmallFilesToSequenceFileConverter.class);job.setInputFormatClass(WholeFileInputFormat.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(BytesWritable.class);job.setOutputFormatClass(SequenceFileOutputFormat.class);job.setMapperClass(SequenceFileMapper.class);FileInputFormat.addInputPath(job, new Path(args[0]));String outputPath = args[1];FileUtils.deleteFileIfExists(outputPath);FileOutputFormat.setOutputPath(job, new Path(outputPath));System.exit(job.waitForCompletion(true) ? 0 : 1);}}

b. WholeFileInputFormat完整代码

package com.shaonaiyi.hadoop.filetype.smallfiles;import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import java.io.IOException;/*** @Author shaonaiyi@163.com* @Date 2019/12/30 16:34* @Description 实现WholeFileInputFormat类*/
public class WholeFileInputFormat extends FileInputFormat<NullWritable, BytesWritable> {@Overrideprotected boolean isSplitable(JobContext context, Path filename) {return false;}@Overridepublic RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit inputSplit, TaskAttemptContext taskAttemptContext) throws IOException, InterruptedException {WholeFileRecordReader reader = new WholeFileRecordReader();reader.initialize(inputSplit, taskAttemptContext);return reader;}
}

c. WholeFileRecordReader完整代码

package com.shaonaiyi.hadoop.filetype.smallfiles;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;import java.io.IOException;/*** @Author shaonaiyi@163.com* @Date 2019/12/30 16:35* @Description 实现WholeFileRecordReader类*/
public class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> {private FileSplit fileSplit;private Configuration configuration;private BytesWritable value = new BytesWritable();private boolean processed = false;@Overridepublic void initialize(InputSplit inputSplit, TaskAttemptContext taskAttemptContext) throws IOException, InterruptedException {this.fileSplit = (FileSplit)inputSplit;this.configuration = taskAttemptContext.getConfiguration();}@Overridepublic boolean nextKeyValue() throws IOException, InterruptedException {if (!processed) {byte[] contents = new byte[(int)fileSplit.getLength()];Path file = fileSplit.getPath();FileSystem fs = file.getFileSystem(configuration);FSDataInputStream in = null;try {in = fs.open(file);IOUtils.readFully(in, contents, 0, contents.length);value.set(contents, 0, contents.length);} finally {IOUtils.closeStream(in);}processed = true;return true;}return false;}@Overridepublic NullWritable getCurrentKey() throws IOException, InterruptedException {return NullWritable.get();}@Overridepublic BytesWritable getCurrentValue() throws IOException, InterruptedException {return value;}@Overridepublic float getProgress() throws IOException, InterruptedException {return processed ? 1.0f : 0.0f;}@Overridepublic void close() throws IOException {}
}

0x02 检验结果

1. 启动HDFS和YARN

start-dfs.sh
start-yarn.sh

2. 执行作业

a. 打包并上传到master上执行,需要传入两个参数

yarn jar ~/jar/hadoop-learning-1.0.jar com.shaonaiyi.hadoop.filetype.smallfiles.SmallFilesToSequenceFileConverter /files /output
3. 查看执行结果

a. 生成了一份文件
在这里插入图片描述
b. 查看到里面的内容如下,但内容很难看
在这里插入图片描述
c. 用text查看文件内容,可看到key为文件名,value为二进制的里面的内容。在这里插入图片描述

0xFF 总结

  1. Input的路径有4个文件,默认会启动4个mapTask,其实我们可以通过CombineTextInputFormat设置成只启动一个:
    job.setInputFormatClass(CombineTextInputFormat.class);

具体操作请参考教程:通过CombineTextInputFormat实现合并小文件(调优技能)


作者简介:邵奈一
全栈工程师、市场洞察者、专栏编辑
| 公众号 | 微信 | 微博 | CSDN | 简书 |

福利:
邵奈一的技术博客导航
邵奈一 原创不易,如转载请标明出处。


这篇关于通过SequenceFile实现合并小文件(调优技能)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406871

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal