MySQL 为什么采用 B+树作为索引?不只告诉你答案还告诉你答案背后的脉络,五年经验程序员整理回答

本文主要是介绍MySQL 为什么采用 B+树作为索引?不只告诉你答案还告诉你答案背后的脉络,五年经验程序员整理回答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

坐对真成被花恼,出门一笑大江横 前言 为什么 MySQL 采用B+树作为索引? 如果纯粹的猜测MySQL数据库索引为什么使用B+树?那么围绕这个问题的回答通常一定是围绕B+树本身是什么,有什么优势这两点去解释这个问题。 (这不是我开始这么去想的,看了很多文章都是从这一维度问答,这些回答让我失望啊。直到那天问了坐在我旁边那个整天摸鱼的5年程序员;他慵懒的回答:你想为什么是使用的是树结构呢? 咦,听到这回答,一下打开了我的思绪,有点意思!) 先抛开B+树是什么,有什么优势,这些先入为主的答案。 (我并不想要这个往我脑袋硬塞的硬邦邦的答案。) 我想要的是为什么? 为什么MySQL的索引有那么多的数据结构可选,偏偏选树结构?为什么那么多的树结构?为什么又偏偏采用 B+ 树作为索引? 这才是我要想明白的!我想要的是不只是答案还要答案背后的脉络! 我想要的不仅是要知其然,更想要知其所以然。 那么多数据结构,为什么选树结构? 众多的数据结构在逻辑层面可分为:线性结构 和 非线性结构。 线性结构有:数组、链表,基于它们衍生出的有哈希表(哈希表也称散列表)、栈、队列等。 非线性结构有:树、图。 还有其他数据结构如:跳表、位图 也都由基础数据结构演化而来,不同的数据结构存在即都是为了解决某些场景问题。 如果要知道索引适合什么数据结构,那我们得先来回答索引需要来解决什么样的问题(痛点)?和发挥着什么样的作用?其次再才是选择什么样的数据结构;后者只是果,前者才是因。 我们都知道MySQL存储的数据是在磁盘里,因为即使设备断电,放在磁盘的数据是不会有影响的,保障了数据不丢失,这意味着MySQL在磁盘上的数据是持久化的。 但数据存储在磁盘得到保障的同时也是有代价的,这代价就是磁盘的处理速度是毫秒级别的,相比内存纳秒级别的速度,简直是小巫见大巫。 你可能对时间单位没什么概念,可以看 1毫秒能慢上纳秒几万倍。

编辑

添加图片注释,不超过 140 字(可选)

索引虽然存储在磁盘上,但使用索引查找数据时,可以从磁盘先读取索引放到内存中,再通过索引从磁盘找到数据;再然后将磁盘读取到的数据也放到内存里。 索引就让磁盘和内存强强联手,趁机搭上了内存的车,感受了一把纳秒级别速度的推背感。

编辑

添加图片注释,不超过 140 字(可选)

但是不管查询的过程中怎么优化,只要根还在磁盘,就避免不了会发生多次磁盘 I/O ,而磁盘 I/O 次数越多,消耗的时间也越多。 (聪明的同学这会可以看出这其实就是个需要考虑解决的痛点了)

  • 要尽少在磁盘做 I/O 操作。

但还有那么多的数据结构可选呢。 其实索引的需要发挥的目的已经决定了有哪些数据结构可选,那么就可以缩小选择其他数据结构的范围。 从为什么要建索引本身的首要目的出发。

  • 要能尽快的按照区间高效地范围查找。

当然索引首要目的能支持高效范围查询,还要有插入更新等操作的动态数据结构。 所以有满足以这两条主要条件的除了树结构你还会想到其他什么数据结构? 哈希表、跳表 哈希表 先看哈希表,哈希表对于我们来说太熟悉不过,哈希表的物理存储是一个数组,而数组在内存中是连续地址的空间。数据以Key、Value的方式存储。哈希表拥有精确的查询,所以时间复杂度是 O(1)。 而哈希表之所以能这么快是通过Key计算数组下标来快速找到Value。最简单的计算的方式是 余数法,通过先计算key的 HashCode,再通过哈希表的数组长度对 HashCode 求余,求余得出的余数就是数组下标,最后由下标访问到哈希表中存的Key、Value。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

但是 Key 计算出的下标

这篇关于MySQL 为什么采用 B+树作为索引?不只告诉你答案还告诉你答案背后的脉络,五年经验程序员整理回答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406736

相关文章

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

Mac电脑如何通过 IntelliJ IDEA 远程连接 MySQL

《Mac电脑如何通过IntelliJIDEA远程连接MySQL》本文详解Mac通过IntelliJIDEA远程连接MySQL的步骤,本文通过图文并茂的形式给大家介绍的非常详细,感兴趣的朋友跟... 目录MAC电脑通过 IntelliJ IDEA 远程连接 mysql 的详细教程一、前缀条件确认二、打开 ID

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum