用MATLAB实现topsis评价法

2023-11-21 22:40
文章标签 matlab 实现 评价 topsis

本文主要是介绍用MATLAB实现topsis评价法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近将topsis评价方法用matlab实现了,就此分享一下具体操作方法,以供大家参考纠正。

1 将topsis的评价流程及函数方程列出

1.1 对各评价对象的参数矩阵进行同向化处理。

一般选择正向化处理,下面列举一些网络上其他博主的公式,以供参考使用。

1.1.1 极大型指标正向化

极大型指标所指意思为,这个指标越大越好,例如(升学率,毕业率等)

Xp=\frac{X-Xmin}{Xmax-Xmin}

X:各极大型属性指标的参数;

Xmax:X参数中的最大参数;

Xmin:X参数中的最小参数;

1.1.2 极小型指标正向化

同极大型指标,即此指标越小越好,例如(挂科率)

Xp=\frac{Xmax-X}{Xmax-Xmin}

公式中各变量意义同1.1.1

1.1.3 中间值型指标正向化

中间值型指标所指意思是,此指标取其中某一个值是最好的,例如(黄金比例)

Xp=1-\frac{\left | X-Xbest \right |}{\left | X-Xbest \right |max}

Xbest:此指标最优值;

1.1.4 区间型指标正向化

区间型指标所指意思为,此指标在某一个区间是最好的,例如(人的体温)

设最优区间[a,b],参数M为

M=max\left \{ a-min\left \{X \right \} ,max\left \{ X \right \}-b\right \}

Xp=\left\{\begin{matrix} 1-\frac{1-X}{M} &X<a \\ 1& a\leqslant X\leqslant b\\ 1-\frac{X-b}{M}& X>b \end{matrix}\right.

将所有指标的参数都进行了同向化处理后,得到一个m×n的同向化矩阵。

1.2 对同向化举证进行归一化处理

Z=\frac{Xp}{\sqrt{\sum_{i=1}^{n}Xp^{2}}}

Z:归一化处理后的m×n矩阵;

1.3 每个参数在Z中所对应的最大值和最小值

Zmax=[max(Z(:,1)),max(Z(:,2)),max(Z(:,3)),max(Z(:,4)),...,max(Z(:,n))];

Zmin=[min(Z(:,1)),min(Z(:,2)),min(Z(:,3)),min(Z(:,4)),...,min(Z(:,n))];

得到两个最大值和最小值向量Zmax和Zmin。

1.4 计算各评价指标的权重

根据专家经验列出一个各评价指标的重要程度矩阵,计算各指标权重ωj。

具体方法可根据AHP(层次分析法)中求权重的方法,这里不列出。

1.5 计算各指标与最优,最差方案的接近程度

Dplus\; i =\sqrt{\sum_{j=1}^{n}\omega j(Zmax\; j-Zij)^{2})}

Dminus\; i =\sqrt{\sum_{j=1}^{n}\omega j(Zmin\; j-Zij)^{2})}

Dplus:指标与最优方案的接近程度;

Dminus:指标与最差方案的接近程度;

ωj:各指标权重;

j:矩阵列数;

i:矩阵行数;

1.6 计算各评价对象与最优方案的接近程度

Si=\frac{Dminus}{Dplus+Dminus}

Si:接近程度向量;

Si越趋近于1,代表此方案越优秀。

2 topsis程序

%初始矩阵
A=[4.69,6.59,51,11.94;2.03,7.86,19,6.46;9.11,6.31,46,8.91;8.61,7.05,46,26.43;7.13,6.5,50,23.57;2.39,6.77,38,24.62;7.69,6.79,38,6.01;9.3,6.81,27,31.57;5.45,7.62,5,18.46;6.19,7.27,17,7.51;7.93,7.53,9,6.52;4.4,7.28,17,25.3;7.46,8.24,23,14.42;2.01,6.4,23,17.91;7.73,6.14,52,15.72;6.35,7.58,25,29.46;8.29,8.41,39,12.02;3.54,7.27,54,3.16;7.44,6.26,8,28.41];
%提取1至4列
B=A(:,1);
C=A(:,2);
D=A(:,3);
E=A(:,4);
%找出1,3,4列最大值和最小值
MAX1=max(B);MAX3=max(D);MAX4=max(E);
MIN1=min(B);MIN3=min(D);MIN4=min(E);
%第2列的最优值为7
BEST=7;
%第4列的最优区间[10,20]
a=10;b=20;
M=max(a-MIN4,MAX4-b);
%矩阵正向化,其中的BP、CP、DP、EP代表每一个指标的参数正向化后的向量
BP=(B-MIN1)/(MAX1-MIN1);
CP=1-((abs(C-BEST))/(max(abs(C-BEST))));
DP=(MAX3-D)/(MAX3-MIN3);
%计算EP
e1=((E<a).*E);
e2=(E>=a&E<=b);
e3=((E>b).*E);
for i=1:length(e1)if e1(i)~=0e1(i)=1-((a-e1(i))/M);end
end
for i=1:length(e3)if e3(i)~=0e3(i)=1-((e3(i)-b)/M);end
end
EP=e1+e2+e3;
%得到正向化矩阵AP
AP=[BP,CP,DP,EP];
%对AP矩阵进行归一化处理,得到矩阵Z
Z=AP./((sum(AP.^2)).^(1/2));
%Z中每一列的最大值和最小值(计算最优方案和最劣方案)
ZMAX=[max(Z(:,1)),max(Z(:,2)),max(Z(:,3)),max(Z(:,4))];
ZMIN=[min(Z(:,1)),min(Z(:,2)),min(Z(:,3)),min(Z(:,4))];
%计算权重,假设其4个因素的重要程度判断矩阵为VERDICT
VERDICT=[1,1,7,5;1,1,7,5;1/7,1/7,1,1/3;1/5,1/5,3,1];
n=4;
%几何平均计算各行向量的权重
Mn=prod(VERDICT,2); 
Mnn=Mn.^(1/n);
%进行归一化
%得到权重Wn
Wn=Mnn/sum(Mnn);
%计算判断矩阵的最大特征值
Aw=VERDICT*Wn;
H=Aw./Wn;
Lambdamax=(1/n)*sum(H);
CI=(Lambdamax-n)/(n-1);
RI=[0,0,0.52,0.89,1.12,1.26,1.36,1.41,1.46,1.49,1.52,1,54,1.56,1.58,1.59];
CR=CI/RI(n);
if    CR<0.1disp('CR<0.1,该矩阵的一致性可以接受')
elsedisp('CR>=0.1,该矩阵的一致性不可接受,需要修改')
end
%计算各评价对象与最优方案、最劣方案的接近程度
%先将Wn列向量转化为行向量,方便计算
Wn=reshape(Wn,1,4);
%将Wn、ZMAX、ZMIN向量复制,形成一个与Z矩阵同行列的矩阵,方便计算
repmat(Wn,19,1);
repmat(ZMAX,19,1);
repmat(ZMIN,19,1);
Dplus=(sum((Wn.*((ZMAX-Z).^2)),2)).^0.5;
Dminus=(sum((Wn.*((ZMIN-Z).^2)),2)).^0.5;
%计算各评价对象与最优方案的贴近程度
Si=Dminus./(Dplus+Dminus)
%Si越趋近于1越优秀

对于matlab的语言,我也只是会粗浅的运用,其中不对的地方望大家纠正。

关于topsis评价法的相关流程和公式,多为参考的网上其他博主的文章,matlab中的代码是自己敲的,此文章的目的为让自己再熟悉一下topsis评价法,也为初学matlab编程的朋友做一个参考。

3 期望

对于topsis方法中,计算各指标与最优,最差方案的接近程度的方法,我是避开了调用矩阵中的元素来作为变量,直接生成一个以矩阵和向量为变量的函数,然后用循环来得出最后的Dplus和Dminus,用的将向量复制成一个同类型矩阵,然后对应元素做运算,我总感觉这样有点low。

希望得到大神指导,如何使向量中的元素作为变量参与函数计算,并进行循环,最后得到一个结果向量。

4 参考文章

https://zhuanlan.zhihu.com/p/37738503

https://yucohny.blog.csdn.net/article/details/113242618?spm=1001.2014.3001.5506

这篇关于用MATLAB实现topsis评价法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405605

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too