SIMD——请不要妄图优化opencv的函数

2023-11-21 15:10

本文主要是介绍SIMD——请不要妄图优化opencv的函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  • ORB-SLAM特征提取之SIMD优化
    • 一、优化手段
      • 1、NEON
      • 2、SSE
    • 二、cv::gaussianblur函数优化
    • 三、cv::FAST函数优化
    • 四、原因分析

ORB-SLAM特征提取之SIMD优化

一、优化手段

1、NEON

NEON是基于ARM架构的一种128位的SIMD(Single Instruction, Multiple Data,单指令、多数据)的拓展结构,具体的细节在这里不做过多的介绍,我们来讨论NEON在实际工程中的两种使用方式:

(1)汇编

相信学习过单片机的朋友对汇编语言一定都是又恨又怕,复杂的指令与奇怪的逻辑令人望而却步,我们来看一小段基于汇编的NEON指令:

 "vld1.8       {d8,d9}, [%[in0]]\n\t""add          %[in0], %[step]\n\t""vld1.8       {d10,d11}, [%[in1]]\n\t""add          %[in1], %[step]\n\t""vld1.8       {d12,d13}, [%[in0]]\n\t""add          %[in0], %[step]\n\t""vld1.8       {d14,d15}, [%[in1]]\n\t"

什么东西?这是什么东西!说实话,我也看不太懂,所以基于汇编的NEON指令难度大,可移植性差,但是由于汇编语言的特性,决定了它具有很高的效率。Anyway,我们来看下一种方式。

(2)使用arm提供的Intrinsics函数
可以认为是内联函数,但是在编译时编译器会将函数转化为neon指令。调用该函数需要包含头文件arm_neon.h,该头文件包含了neon各种操作函数。当然,我在这里同样来展示一段代码:

 for(; j < img.cols - 16 - 3; j += 16, ptr += 16){uint8x16_t m0,m1;uint8x16_t v0 = vld1q_u8((const uint8_t*)ptr);uint8x16_t v1 = vqsubq_u8(v0,t);v0 = vqaddq_u8(v0,t);

了解过NEON的同学这段代码应该不难看懂,就是简单的加减法,我们可以看到,这种内联方式的NEON代码指令难度低,可移植行也就比汇编形式的高很多。

2、SSE

SSE是Intel x86架构CPU的SIMD指令的简称,与NEON一样具有汇编和内联函数两种形式。

二、cv::gaussianblur函数优化

由于本次实验的电脑是intel的CPU,所以采用SSE优化的方式对高斯模糊函数进行优化,在优化之前,记录了cv::gaussianblur函数的效率如下图所示:在这里插入图片描述9.41ms,在我的认知领域内,应该不是具有很高效率的时常,所以我对该函数进行了SSE优化,对gaussainblur函数的源码进行了修改,执行时间如下:在这里插入图片描述惊人的148ms。当然,如果你需要的源码,可以私信我,我发给你自己run一下。总的来说,这并不是一次非常愉快的优化过程,同样的,接下来的SSE优化也令我大跌眼镜。

三、cv::FAST函数优化

FAST提取图像中的特征点是ORB-SLAM系列中使用的一种方法,具体原理不再赘述,因为这毕竟不是一篇介绍SLAM算法的blog,我们来看opencv实现的FAST函数耗时如何:在这里插入图片描述
结果是2.65ms,不得不说opencv优化的已经很好了。注意!!!这里使用了和ORBSLAM2中相同的阈值:20。在ORBSLAM2中该函数在网格的循环遍历中被调用,ORBSLAM2将图像分为30x30个网格,在每个网格中进行FAST角点检测,经过测量,每个网格中耗时约为0.02ms,为什么差异这么大呢,首先于ORBSLAM中独特的网格划分有关系,其次与图像的大小也有关系。接下来,我们来看我进行了SSE优化的代码,相关代码已经有NEON实现,你需要做的只是将NEON转化为SSE即可:在这里插入图片描述50ms。。唉,当我看到这个结果的时候,心里有一种说不出的酸楚…

四、原因分析

实验失败不可怕,可怕的是不分析为什么失败,经过资料的查询与文献的阅读我大概的掌握了其中的奥义。

(1)OpenCV的函数自带SIMD加速,无论是gaussainblur还是FAST都自带了SMID的并行加速,并且OpenCV代码结构和顺序更加合理,能够更好的发挥CPU的全部性能
(2)OpenCV的优化是按照运行环境中CPU的架构来决定的,我们知道到INTEL的SIMD指令集avx512是高于SSE的,由于我运行的环境中支持avx512,所以使用该指令集的优化代码效率必然高于SSE。
(3)最终的建议是:别动OpenCV的源码为好,除非用汇编…,这得是神人来写了。

这篇关于SIMD——请不要妄图优化opencv的函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/403146

相关文章

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并