CVPR2021| 继SE,CBAM后的一种新的注意力机制:坐标注意力机制(Coordinate Attention)

2023-11-21 13:10

本文主要是介绍CVPR2021| 继SE,CBAM后的一种新的注意力机制:坐标注意力机制(Coordinate Attention),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

论文:http://arxiv.org/abs/2103.02907论文:http://arxiv.org/abs/2103.02907

 论文:源码:https://github.com/Andrew-Qibin/CoordAttention

        在本文中提出了一种新颖且高效的注意力机制,通过嵌入位置信息到通道注意力,从而使移动网络获取更大区域的信息而避免引入大的开销。为了避免2D全局池化引入位置信息损失,本文提出分解通道注意为两个并行的1D特征编码来高效地整合空间坐标信息到生成的attention maps中。

        具体而言,利用两个1D全局池化操作将沿垂直和水平方向的input features分别聚合为两个单独的direction-aware feature maps。 然后将具有嵌入的特定方向信息的这两个特征图分别编码为两个attention map,每个attention map都沿一个空间方向捕获输入特征图的远距离依存关系。 位置信息因此可以被保存在所生成的attention map中。 然后通过乘法将两个attention map都应用于input feature maps,以强调注意区域的表示。

        考虑到其操作可以区分空间方向(W,H即坐标)并生成coordinate-aware attention maps,因此论文将提出的注意力方法称为“coordinate attention”。

二、图解

 

         1、得到input后,获取input的W和H,然后对W和H分别进行平均池化。XAvgPoo是对W方向做平均池化,得到C × H × 1;同样 YAvgPool是对H方向做平均池化,得到C × 1 × W
        2、对平均池化后的结果做空间维度(dim=2)的concat,然后做卷积(kernel_size=1, stride=1)压缩通道

        3、然后再通过BN和Non-linear(激活函数)
        4、再进行split分离(就是将完整的特征向量重新分为两个方向的向量),然后做卷积(kernel_size=1, stride=1)重新调整两个方向特征向量的通道数,然后经过Sigmoid函数
        5、最后在与原输入信息进行两个方向的加权


三、pytorch代码

        

import torch
import torch.nn as nn
import math
import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, oup, reduction=32):super(CoordAtt, self).__init__()self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out

        插入CAM模块后的结果跟自己网络和数据集有关

这篇关于CVPR2021| 继SE,CBAM后的一种新的注意力机制:坐标注意力机制(Coordinate Attention)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402531

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核