深度学习之生成唐诗案例(Pytorch版)

2023-11-21 12:20

本文主要是介绍深度学习之生成唐诗案例(Pytorch版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要思路:

对于唐诗生成来说,我们定义一个"S" 和 "E"作为开始和结束。

 示例的唐诗大概有40000多首,

首先数据预处理,将唐诗加载到内存,生成对应的word2idx、idx2word、以及唐诗按顺序的字序列。

Dataset_Dataloader.py
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoaderdef deal_tangshi():with open("poems.txt", "r", encoding="utf-8") as fr:lines = fr.read().strip().split("\n")tangshis = []for line in lines:splits = line.split(":")if len(splits) != 2:continuetangshis.append("S" + splits[1] + "E")word2idx = {"S": 0, "E": 1}word2idx_count = 2tangshi_ids = []for tangshi in tangshis:for word in tangshi:if word not in word2idx:word2idx[word] = word2idx_countword2idx_count += 1idx2word = {idx: w for w, idx in word2idx.items()}for tangshi in tangshis:tangshi_ids.extend([word2idx[w] for w in tangshi])return word2idx, idx2word, tangshis, word2idx_count, tangshi_idsword2idx, idx2word, tangshis, word2idx_count, tangshi_ids = deal_tangshi()class TangShiDataset(Dataset):def __init__(self, tangshi_ids, num_chars):# 语料数据self.tangshi_ids = tangshi_ids# 语料长度self.num_chars = num_chars# 词的数量self.word_count = len(self.tangshi_ids)# 句子数量self.number = self.word_count // self.num_charsdef __len__(self):return self.numberdef __getitem__(self, idx):# 修正索引值到: [0, self.word_count - 1]start = min(max(idx, 0), self.word_count - self.num_chars - 2)x = self.tangshi_ids[start: start + self.num_chars]y = self.tangshi_ids[start + 1: start + 1 + self.num_chars]return torch.tensor(x), torch.tensor(y)def __test_Dataset():dataset = TangShiDataset(tangshi_ids, 8)x, y = dataset[0]print(x, y)if __name__ == '__main__':# deal_tangshi()__test_Dataset()
TangShiModel.py:唐诗的模型
import torch
import torch.nn as nn
from Dataset_Dataloader import *
import torch.nn.functional as Fclass TangShiRNN(nn.Module):def __init__(self, vocab_size):super().__init__()# 初始化词嵌入层self.ebd = nn.Embedding(vocab_size, 128)# 循环网络层self.rnn = nn.RNN(128, 128, 1)# 输出层self.out = nn.Linear(128, vocab_size)def forward(self, inputs, hidden):embed = self.ebd(inputs)# 正则化层embed = F.dropout(embed, p=0.2)output, hidden = self.rnn(embed.transpose(0, 1), hidden)# 正则化层embed = F.dropout(output, p=0.2)output = self.out(output.squeeze())return output, hiddendef init_hidden(self):return torch.zeros(1, 64, 128)

 main.py:

import timeimport torchfrom Dataset_Dataloader import *
from TangShiModel import *
import torch.optim as optim
from tqdm import tqdmdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")def train():dataset = TangShiDataset(tangshi_ids, 128)epochs = 100model = TangShiRNN(word2idx_count).to(device)criterion = nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters(), lr=1e-3)for idx in range(epochs):dataloader = DataLoader(dataset, batch_size=64, shuffle=True, drop_last=True)start_time = time.time()total_loss = 0total_num = 0total_correct = 0total_correct_num = 0hidden = model.init_hidden()for x, y in tqdm(dataloader):x = x.to(device)y = y.to(device)# 隐藏状态hidden = model.init_hidden()hidden = hidden.to(device)# 模型计算output, hidden = model(x, hidden)# print(output.shape)# print(y.shape)# 计算损失loss = criterion(output.permute(1, 2, 0), y)# 梯度清零optimizer.zero_grad()# 反向传播loss.backward()# 参数更新optimizer.step()total_loss += loss.sum().item()total_num += len(y)total_correct_num += y.shape[0] * y.shape[1]# print(output.shape)total_correct += (torch.argmax(output.permute(1, 0, 2), dim=-1) == y).sum().item()print("epoch : %d average_loss : %.3f average_correct : %.3f use_time : %ds" %(idx + 1, total_loss / total_num, total_correct / total_correct_num, time.time() - start_time))torch.save(model.state_dict(), f"./modules/tangshi_module_{idx + 1}.bin")if __name__ == '__main__':train()

predict.py:

import torch
import torch.nn as nn
from Dataset_Dataloader import *
from TangShiModel import *device = torch.device("cuda" if torch.cuda.is_available() else "cpu")def predict():model = TangShiRNN(word2idx_count)model.load_state_dict(torch.load("./modules/tangshi_module_100.bin", map_location=torch.device('cpu')))model.eval()hidden = torch.zeros(1, 1, 128)start_word = input("输入第一个字:")flag = Nonetangshi_strs = []while True:if not flag:outputs, hidden = model(torch.tensor([[word2idx["S"]]], dtype=torch.long), hidden)tangshi_strs.append("S")flag = Trueelse:tangshi_strs.append(start_word)outputs, hidden = model(torch.tensor([[word2idx[start_word]]], dtype=torch.long), hidden)top_i = torch.argmax(outputs, dim=-1)if top_i.item() == word2idx["E"]:breakprint(top_i)start_word = idx2word[top_i.item()]print(tangshi_strs)if __name__ == '__main__':predict()

完整代码如下:

https://github.com/STZZ-1992/tangshi-generator.giticon-default.png?t=N7T8https://github.com/STZZ-1992/tangshi-generator.git

这篇关于深度学习之生成唐诗案例(Pytorch版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402341

相关文章

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、