单张图像3D重建:原理与PyTorch实现

2023-11-21 12:15

本文主要是介绍单张图像3D重建:原理与PyTorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近年来,深度学习(DL)在解决图像分类、目标检测、语义分割等 2D 图像任务方面表现出了出色的能力。DL 也不例外,在将其应用于 3D 图形问题方面也取得了巨大进展。 在这篇文章中,我们将探讨最近将深度学习扩展到单图像 3D 重建任务的尝试,这是 3D 计算机图形领域最重要和最深刻的挑战之一。

 在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器

1、单图像3D重建任务

单个图像只是 3D 对象到 2D 平面的投影,来自高维空间的一些数据必然在低维表示中丢失。 因此,从单视图 2D 图像来看,永远不会有足够的数据来构造其 3D 组件。

因此,从单个 2D 图像创建 3D 感知的方法需要先了解 3D 形状本身。

在 2D 深度学习中,卷积自动编码器是学习输入图像的压缩表示的非常有效的方法。 将这种架构扩展到学习紧凑的形状知识是将深度学习应用于 3D 数据的最有前途的方法。

2、3D 数据的表示

与只有一种计算机格式(像素)通用表示形式的 2D 图像不同,有多种方法可以用数字格式表示 3D 数据。 它们各有优缺点,因此数据表示的选择直接影响可以使用的方法。

2.1 光栅化形式(体素网格)

光栅法表示的3D模型可以直接应用CNN。

每个蓝色框都是一个体素,大部分体素是空的。

体素(voxel)是体积像素的缩写,是空间网格像素到体积网格体素的直接扩展。 每个体素的局部性共同定义了该体积数据的独特结构,因此 ConvNet 的局部性假设在体积格式中仍然成立。

体素表示的密度低


然而,这种表示是稀疏且浪费的。 有用体素的密度随着分辨率的增加而降低。

  • 优点:可以直接应用CNN从2D到3D表示。
  • 缺点:浪费表示,细节和资源(计算、内存)之间的高度权衡。

2.2 几何形式

几何形式表达的3D模型不能直接应用CNN。

  • 多边形网格:是顶点、边和面的集合,定义了物体的 3 维表面。 它可以以相当紧凑的表示形式捕获粒度细节。
  • 点云:3D 坐标 (x, y, z) 中的点的集合,这些点一起形成类似于 3 维物体形状的云。 点的集合越大,获得的细节就越多。 不同顺序的同一组点仍然表示相同的 3D 对象。例如:
# point_cloud1 and point_cloud2 represent the same 3D structure
# even though they are represented differently in memory
point_cloud1 = [(x1, y1, z1), (x2, y2, z2),..., (xn, yn, zn)]
point_cloud2 = [(x2, y2, z2), (x1, y1, z1),..., (xn, yn, zn)]

几何表示法的优缺点如下:

  • 优点:表现紧凑,注重3D物体的细节表面。
  • 缺点:不能直接应用CNN。

3、我们的实现方法

我们将展示一种结合了点云紧凑表示的优点但使用传统的 2D ConvNet 来学习先验形状知识的实现。

3.1 2D 结构生成器

我们将构建一个标准的 2D CNN 结构生成器,用于学习对象的先验形状知识。

体素方法并不受欢迎,因为它效率低下,而且不可能直接用 CNN 学习点云。 因此,我们将学习从单个图像到点云的多个 2D 投影的映射,视点处的 2D 投影定义为: 2D projection == 3D coordinates (x,y,z) + binary mask (m) 。

  • 输入:单个 RGB 图像
  • 输出:预定视点的 2D 投影

代码如下:

#--------- Pytorch pseudo-code for Structure Generator ---------#
class Structure_Generator(nn.Module):# contains two module in sequence, an encoder and a decoderdef __init__(self):self.encoder = Encoder()self.decoder = Decoder()def forward(self, RGB_image):# Encoder takes in one RGB image and # output an encoded deep shape-embeddingshape_embedding = self.encoder(RGB_image)# Decoder takes the encoded values and output  # multiples 2D projection (XYZ + mask)XYZ, maskLogit = self.decoder(shape_embedding)return XYZ, maskLogit

3.2 点云融合

将预测的 2D 投影融合到原生 3D 点云数据中。 这是可能的,因为这些预测的观点是固定的并且是预先已知的。

  • 输入:预定视点的 2D 投影。
  • 输出:点云

3.3 伪渲染器

我们推断,如果从预测的 2D 投影融合的点云有任何好处,那么如果我们从新的视点渲染不同的 2D 投影,它也应该类似于地面实况 3D 模型的投影。

  • 输入:点云
  • 输出:新视点的深度图像

3.4 训练动态

将这 3 个模块组合在一起,我们获得了端到端模型,该模型学习仅使用 2D 卷积结构生成器从一张 2D 图像生成紧凑的点云表示。

由 2D 卷积结构生成器、点云融合和伪渲染模块组成的完整架构

这个模型的巧妙技巧是让融合+伪渲染模块纯粹可微,几何推理:

  • 几何代数意味着没有可学习的参数,使模型尺寸更小并且更容易训练。
  • 可微分意味着我们可以通过它反向传播梯度,从而可以使用 2D 投影的损失来学习生成 3D 点云。

代码如下:

# --------- Pytorch pseudo-code for training loop ----------#
# Create 2D Conv Structure generator
model = Structure_Generator()
# only need to learn the 2D structure optimizer
optimizer = optim.SGD(model.parameters())
# 2D projections from predetermined viewpoints
XYZ, maskLogit = model(RGB_images)
# fused point cloud
#fuseTrans is predetermined viewpoints info
XYZid, ML = fuse3D(XYZ, maskLogit, fuseTrans)
# Render new depth images at novel viewpoints
# renderTrans is novel viewpoints info
newDepth, newMaskLogit, collision = render2D(XYZid, ML, renderTrans)
# Compute loss between novel view and ground truth
loss_depth = L1Loss()(newDepth, GTDepth)
loss_mask = BCEWithLogitLoss()(newMaskLogit, GTMask)
loss_total = loss_depth + loss_mask
# Back-propagation to update Structure Generator
loss_total.backward()
optimizer.step()

3.5 实验结果

来自地面实况 3D 模型的新深度图像与来自学习点云模型的渲染深度图像的比较:

从一张 RBG 图像 → 3D 点云:

有了详细的点云表示,就可以使用 MeshLab 将其转换为其他表示,例如与 3D 打印机兼容的体素或多边形网格。


原文链接:单图像3D重建原理实现 - BimAnt

这篇关于单张图像3D重建:原理与PyTorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402293

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll