单张图像3D重建:原理与PyTorch实现

2023-11-21 12:15

本文主要是介绍单张图像3D重建:原理与PyTorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近年来,深度学习(DL)在解决图像分类、目标检测、语义分割等 2D 图像任务方面表现出了出色的能力。DL 也不例外,在将其应用于 3D 图形问题方面也取得了巨大进展。 在这篇文章中,我们将探讨最近将深度学习扩展到单图像 3D 重建任务的尝试,这是 3D 计算机图形领域最重要和最深刻的挑战之一。

 在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器

1、单图像3D重建任务

单个图像只是 3D 对象到 2D 平面的投影,来自高维空间的一些数据必然在低维表示中丢失。 因此,从单视图 2D 图像来看,永远不会有足够的数据来构造其 3D 组件。

因此,从单个 2D 图像创建 3D 感知的方法需要先了解 3D 形状本身。

在 2D 深度学习中,卷积自动编码器是学习输入图像的压缩表示的非常有效的方法。 将这种架构扩展到学习紧凑的形状知识是将深度学习应用于 3D 数据的最有前途的方法。

2、3D 数据的表示

与只有一种计算机格式(像素)通用表示形式的 2D 图像不同,有多种方法可以用数字格式表示 3D 数据。 它们各有优缺点,因此数据表示的选择直接影响可以使用的方法。

2.1 光栅化形式(体素网格)

光栅法表示的3D模型可以直接应用CNN。

每个蓝色框都是一个体素,大部分体素是空的。

体素(voxel)是体积像素的缩写,是空间网格像素到体积网格体素的直接扩展。 每个体素的局部性共同定义了该体积数据的独特结构,因此 ConvNet 的局部性假设在体积格式中仍然成立。

体素表示的密度低


然而,这种表示是稀疏且浪费的。 有用体素的密度随着分辨率的增加而降低。

  • 优点:可以直接应用CNN从2D到3D表示。
  • 缺点:浪费表示,细节和资源(计算、内存)之间的高度权衡。

2.2 几何形式

几何形式表达的3D模型不能直接应用CNN。

  • 多边形网格:是顶点、边和面的集合,定义了物体的 3 维表面。 它可以以相当紧凑的表示形式捕获粒度细节。
  • 点云:3D 坐标 (x, y, z) 中的点的集合,这些点一起形成类似于 3 维物体形状的云。 点的集合越大,获得的细节就越多。 不同顺序的同一组点仍然表示相同的 3D 对象。例如:
# point_cloud1 and point_cloud2 represent the same 3D structure
# even though they are represented differently in memory
point_cloud1 = [(x1, y1, z1), (x2, y2, z2),..., (xn, yn, zn)]
point_cloud2 = [(x2, y2, z2), (x1, y1, z1),..., (xn, yn, zn)]

几何表示法的优缺点如下:

  • 优点:表现紧凑,注重3D物体的细节表面。
  • 缺点:不能直接应用CNN。

3、我们的实现方法

我们将展示一种结合了点云紧凑表示的优点但使用传统的 2D ConvNet 来学习先验形状知识的实现。

3.1 2D 结构生成器

我们将构建一个标准的 2D CNN 结构生成器,用于学习对象的先验形状知识。

体素方法并不受欢迎,因为它效率低下,而且不可能直接用 CNN 学习点云。 因此,我们将学习从单个图像到点云的多个 2D 投影的映射,视点处的 2D 投影定义为: 2D projection == 3D coordinates (x,y,z) + binary mask (m) 。

  • 输入:单个 RGB 图像
  • 输出:预定视点的 2D 投影

代码如下:

#--------- Pytorch pseudo-code for Structure Generator ---------#
class Structure_Generator(nn.Module):# contains two module in sequence, an encoder and a decoderdef __init__(self):self.encoder = Encoder()self.decoder = Decoder()def forward(self, RGB_image):# Encoder takes in one RGB image and # output an encoded deep shape-embeddingshape_embedding = self.encoder(RGB_image)# Decoder takes the encoded values and output  # multiples 2D projection (XYZ + mask)XYZ, maskLogit = self.decoder(shape_embedding)return XYZ, maskLogit

3.2 点云融合

将预测的 2D 投影融合到原生 3D 点云数据中。 这是可能的,因为这些预测的观点是固定的并且是预先已知的。

  • 输入:预定视点的 2D 投影。
  • 输出:点云

3.3 伪渲染器

我们推断,如果从预测的 2D 投影融合的点云有任何好处,那么如果我们从新的视点渲染不同的 2D 投影,它也应该类似于地面实况 3D 模型的投影。

  • 输入:点云
  • 输出:新视点的深度图像

3.4 训练动态

将这 3 个模块组合在一起,我们获得了端到端模型,该模型学习仅使用 2D 卷积结构生成器从一张 2D 图像生成紧凑的点云表示。

由 2D 卷积结构生成器、点云融合和伪渲染模块组成的完整架构

这个模型的巧妙技巧是让融合+伪渲染模块纯粹可微,几何推理:

  • 几何代数意味着没有可学习的参数,使模型尺寸更小并且更容易训练。
  • 可微分意味着我们可以通过它反向传播梯度,从而可以使用 2D 投影的损失来学习生成 3D 点云。

代码如下:

# --------- Pytorch pseudo-code for training loop ----------#
# Create 2D Conv Structure generator
model = Structure_Generator()
# only need to learn the 2D structure optimizer
optimizer = optim.SGD(model.parameters())
# 2D projections from predetermined viewpoints
XYZ, maskLogit = model(RGB_images)
# fused point cloud
#fuseTrans is predetermined viewpoints info
XYZid, ML = fuse3D(XYZ, maskLogit, fuseTrans)
# Render new depth images at novel viewpoints
# renderTrans is novel viewpoints info
newDepth, newMaskLogit, collision = render2D(XYZid, ML, renderTrans)
# Compute loss between novel view and ground truth
loss_depth = L1Loss()(newDepth, GTDepth)
loss_mask = BCEWithLogitLoss()(newMaskLogit, GTMask)
loss_total = loss_depth + loss_mask
# Back-propagation to update Structure Generator
loss_total.backward()
optimizer.step()

3.5 实验结果

来自地面实况 3D 模型的新深度图像与来自学习点云模型的渲染深度图像的比较:

从一张 RBG 图像 → 3D 点云:

有了详细的点云表示,就可以使用 MeshLab 将其转换为其他表示,例如与 3D 打印机兼容的体素或多边形网格。


原文链接:单图像3D重建原理实现 - BimAnt

这篇关于单张图像3D重建:原理与PyTorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402293

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可