论文笔记(含代码)Tumor attention networks: Better feature selection, better tumor segmentation

本文主要是介绍论文笔记(含代码)Tumor attention networks: Better feature selection, better tumor segmentation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

肿瘤注意网络:更好的特征选择,更好的肿瘤分割

ELSEVIER  Neural Networks 2021

1.提出了一种精确的自动肿瘤分割方法(TA-Net),通过充分利用卷积神经网络和视觉注意机制,用于临床肝脏计算机断层扫描。

2.设计了一个新的肝脏肿瘤分割管道,从不同角度利用各种类型的网络模块,如Encoder Blocks(预训练网络),各种模块和块重复几次(网络深度)、Inception Blocks 和 Context Blocks(网络宽度)、Decoder Blocks(参数缩减)、Skip Connections(信息融合)和 Tumor Attention Blocks(视觉注意方案和网络基数)。

3.对两种流行的skip connection(Residual残差 Connection vs Concat Connection)和无skip connection进行了深入分析和比较:

评估指标

 

Dice coefficient (DC)   Volume Overlap Error (VOE)   Relative Volume Error (RVD)

Average Symmetric Surface Distance (ASD)      Maximum Surface Distance (MSD)

Dice 系数、体积重叠误差(VOE)、相对体积误差(RVD)

平均对称表面距离(ASD/ASDD)、均方根对称面距离(RMSD) 

import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as Ffrom functools import partialimport Constantsnonlinearity = partial(F.relu, inplace=True)class DACblock(nn.Module):def __init__(self, channel):super(DACblock, self).__init__()self.dilate1 = nn.Conv2d(channel, channel, kernel_size=3, dilation=1, padding=1)self.dilate2 = nn.Conv2d(channel, channel, kernel_size=3, dilation=3, padding=3)self.dilate3 = nn.Conv2d(channel, channel, kernel_size=3, dilation=5, padding=5)self.conv1x1 = nn.Conv2d(channel, channel, kernel_size=1, dilation=1, padding=0)for m in self.modules():if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):if m.bias is not None:m.bias.data.zero_()def forward(self, x):dilate1_out = nonlinearity(self.dilate1(x))dilate2_out = nonlinearity(self.conv1x1(self.dilate2(x)))dilate3_out = nonlinearity(self.conv1x1(self.dilate2(self.dilate1(x))))dilate4_out = nonlinearity(self.conv1x1(self.dilate3(self.dilate2(self.dilate1(x)))))out = x + dilate1_out + dilate2_out + dilate3_out + dilate4_outreturn outclass DACblock_without_atrous(nn.Module):def __init__(self, channel):super(DACblock_without_atrous, self).__init__()self.dilate1 = nn.Conv2d(channel, channel, kernel_size=3, dilation=1, padding=1)self.dilate2 = nn.Conv2d(channel, channel, kernel_size=3, dilation=1, padding=1)self.dilate3 = nn.Conv2d(channel, channel, kernel_size=3, dilation=1, padding=1)self.conv1x1 = nn.Conv2d(channel, channel, kernel_size=1, dilation=1, padding=0)for m in self.modules():if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):if m.bias is not None:m.bias.data.zero_()def forward(self, x):dilate1_out = nonlinearity(self.dilate1(x))dilate2_out = nonlinearity(self.conv1x1(self.dilate2(x)))dilate3_out = nonlinearity(self.conv1x1(self.dilate2(self.dilate1(x))))dilate4_out = nonlinearity(self.conv1x1(self.dilate3(self.dilate2(self.dilate1(x)))))out = x + dilate1_out + dilate2_out + dilate3_out + dilate4_outreturn outclass DACblock_with_inception(nn.Module):def __init__(self, channel):super(DACblock_with_inception, self).__init__()self.dilate1 = nn.Conv2d(channel, channel, kernel_size=1, dilation=1, padding=0)self.dilate3 = nn.Conv2d(channel, channel, kernel_size=3, dilation=1, padding=1)self.conv1x1 = nn.Conv2d(2 * channel, channel, kernel_size=1, dilation=1, padding=0)for m in self.modules():if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):if m.bias is not None:m.bias.data.zero_()def forward(self, x):dilate1_out = nonlinearity(self.dilate1(x))dilate2_out = nonlinearity(self.dilate3(self.dilate1(x)))dilate_concat = nonlinearity(self.conv1x1(torch.cat([dilate1_out, dilate2_out], 1)))dilate3_out = nonlinearity(self.dilate1(dilate_concat))out = x + dilate3_outreturn outclass DACblock_with_inception_blocks(nn.Module):def __init__(self, channel):super(DACblock_with_inception_blocks, self).__init__()self.conv1x1 = nn.Conv2d(channel, channel, kernel_size=1, dilation=1, padding=0)self.conv3x3 = nn.Conv2d(channel, channel, kernel_size=3, dilation=1, padding=1)self.conv5x5 = nn.Conv2d(channel, channel, kernel_size=5, dilation=1, padding=2)self.pooling = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)for m in self.modules():if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):if m.bias is not None:m.bias.data.zero_()def forward(self, x):dilate1_out = nonlinearity(self.conv1x1(x))dilate2_out = nonlinearity(self.conv3x3(self.conv1x1(x)))dilate3_out = nonlinearity(self.conv5x5(self.conv1x1(x)))dilate4_out = self.pooling(x)out = dilate1_out + dilate2_out + dilate3_out + dilate4_outreturn outclass PSPModule(nn.Module):def __init__(self, features, out_features=1024, sizes=(2, 3, 6, 14)):super().__init__()self.stages = []self.stages = nn.ModuleList([self._make_stage(features, size) for size in sizes])self.bottleneck = nn.Conv2d(features * (len(sizes) + 1), out_features, kernel_size=1)self.relu = nn.ReLU()def _make_stage(self, features, size):prior = nn.AdaptiveAvgPool2d(output_size=(size, size))conv = nn.Conv2d(features, features, kernel_size=1, bias=False)return nn.Sequential(prior, conv)def forward(self, feats):h, w = feats.size(2), feats.size(3)priors = [F.upsample(input=stage(feats), size=(h, w), mode='bilinear') for stage in self.stages] + [feats]bottle = self.bottleneck(torch.cat(priors, 1))return self.relu(bottle)class SPPblock(nn.Module):def __init__(self, in_channels):super(SPPblock, self).__init__()self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=2)self.pool2 = nn.MaxPool2d(kernel_size=[3, 3], stride=3)self.pool3 = nn.MaxPool2d(kernel_size=[5, 5], stride=5)self.pool4 = nn.MaxPool2d(kernel_size=[6, 6], stride=6)self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1, kernel_size=1, padding=0)def forward(self, x):self.in_channels, h, w = x.size(1), x.size(2), x.size(3)self.layer1 = F.upsample(self.conv(self.pool1(x)), size=(h, w), mode='bilinear')self.layer2 = F.upsample(self.conv(self.pool2(x)), size=(h, w), mode='bilinear')self.layer3 = F.upsample(self.conv(self.pool3(x)), size=(h, w), mode='bilinear')self.layer4 = F.upsample(self.conv(self.pool4(x)), size=(h, w), mode='bilinear')out = torch.cat([self.layer1, self.layer2, self.layer3, self.layer4, x], 1)return outclass DecoderBlock(nn.Module):def __init__(self, in_channels, n_filters):super(DecoderBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, in_channels // 4, 1)self.norm1 = nn.BatchNorm2d(in_channels // 4)self.relu1 = nonlinearityself.deconv2 = nn.ConvTranspose2d(in_channels // 4, in_channels // 4, 3, stride=2, padding=1, output_padding=1)self.norm2 = nn.BatchNorm2d(in_channels // 4)self.relu2 = nonlinearityself.conv3 = nn.Conv2d(in_channels // 4, n_filters, 1)self.norm3 = nn.BatchNorm2d(n_filters)self.relu3 = nonlinearitydef forward(self, x):x = self.conv1(x)x = self.norm1(x)x = self.relu1(x)x = self.deconv2(x)x = self.norm2(x)x = self.relu2(x)x = self.conv3(x)x = self.norm3(x)x = self.relu3(x)return xclass ChannelMeanAttention(nn.Module):def __init__(self, num_channels):super(ChannelMeanAttention, self).__init__()num_channels_reduced = num_channels // 2self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)self.relu = nonlinearitydef forward(self, input_tensor):batch_size, num_channels, H, W = input_tensor.size()squeeze_tensor = input_tensor.view(batch_size, num_channels, -1).mean(dim=2)fc_out_1 = self.relu(self.fc1(squeeze_tensor))fc_out_2 = F.sigmoid(self.fc2(fc_out_1))a, b = squeeze_tensor.size()output_tensor = torch.mul(input_tensor, fc_out_2.view(a, b, 1, 1))return output_tensorclass ChannelMeanMaxAttention(nn.Module):def __init__(self, num_channels):super(ChannelMeanMaxAttention, self).__init__()num_channels_reduced = num_channels // 2self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias = True)self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias = True)self.relu = nonlinearitydef forward(self, input_tensor):batch_size, num_channels, H, W = input_tensor.size()squeeze_tensor_mean = input_tensor.view(batch_size, num_channels, -1).mean(dim=2)fc_out_1_mean = self.relu(self.fc1(squeeze_tensor_mean))fc_out_2_mean = self.fc2(fc_out_1_mean)squeeze_tensor_max = input_tensor.view(batch_size, num_channels, -1).max(dim=2)[0]fc_out_1_max = self.relu(self.fc1(squeeze_tensor_max))fc_out_2_max = self.fc2(fc_out_1_max) a, b = squeeze_tensor_mean.size()result = torch.Tensor(a, b)result = torch.add(fc_out_2_mean, fc_out_2_max)fc_out_2 = F.sigmoid(result)output_tensor = torch.mul(input_tensor, fc_out_2.view(a, b, 1, 1))return output_tensorclass SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()padding = 3self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):input_tensor = xavg_out = torch.mean(x, dim=1, keepdim = True)max_out, _ = torch.max(x, dim=1, keepdim = True)x = torch.cat([avg_out, max_out], dim =1)x = self.conv1(x)return self.sigmoid(x) * input_tensorclass TA_Net_(nn.Module):def __init__(self, num_classes=Constants.BINARY_CLASS, num_channels=3):super(TA_Net_, self).__init__()filters = [64, 128, 256, 512]resnet = models.resnet34(pretrained=True)self.firstconv = resnet.conv1self.firstbn = resnet.bn1self.firstrelu = resnet.reluself.firstmaxpool = resnet.maxpoolself.encoder1 = resnet.layer1self.encoder2 = resnet.layer2self.encoder3 = resnet.layer3self.encoder4 = resnet.layer4self.dblock = DACblock(512)self.spp = SPPblock(512)self.decoder4 = DecoderBlock(516, filters[2])self.channelmeanmaxattention1 = ChannelMeanMaxAttention(filters[2]*2)self.spatialattention1 = SpatialAttention()self.decoder3 = DecoderBlock(filters[2]*2, filters[1])self.channelmeanmaxattention2 = ChannelMeanMaxAttention(filters[1]*2)self.spatialattention2 = SpatialAttention()self.decoder2 = DecoderBlock(filters[1]*2, filters[0])self.channelmeanmaxattention3 = ChannelMeanMaxAttention(filters[0]*2)self.spatialattention3 = SpatialAttention()self.decoder1 = DecoderBlock(filters[0]*2, filters[0])self.finaldeconv1 = nn.ConvTranspose2d(filters[0], 32, 4, 2, 1)self.finalrelu1 = nonlinearityself.finalconv2 = nn.Conv2d(32, 32, 3, padding=1)self.finalrelu2 = nonlinearityself.finalconv3 = nn.Conv2d(32, num_classes, 3, padding=1)def forward(self, x):# Encoderx = self.firstconv(x)x = self.firstbn(x)x = self.firstrelu(x)x = self.firstmaxpool(x)e1 = self.encoder1(x)e2 = self.encoder2(e1)e3 = self.encoder3(e2)e4 = self.encoder4(e3)# Centere4 = self.dblock(e4)e4 = self.spp(e4)# Decoderd4_before = torch.cat([self.decoder4(e4), e3], 1)d4 = self.channelmeanmaxattention1(d4_before)d4 = self.spatialattention1(d4)d3_before = torch.cat([self.decoder3(d4), e2], 1)d3 = self.channelmeanmaxattention2(d3_before)d3 = self.spatialattention2(d3)d2_before = torch.cat([self.decoder2(d3), e1], 1)d2 = self.channelmeanmaxattention3(d2_before)d2 = self.spatialattention3(d2)d1 = self.decoder1(d2)out = self.finaldeconv1(d1)out = self.finalrelu1(out)out = self.finalconv2(out)out = self.finalrelu2(out)out = self.finalconv3(out)return F.sigmoid(out), [d4_before, d3_before, d2_before]  # pang for before#return F.sigmoid(out), [d4,d3,d2]def output_features(self, x):  # this way doesnot work.# Encoderx = self.firstconv(x)x = self.firstbn(x)x = self.firstrelu(x)x = self.firstmaxpool(x)e1 = self.encoder1(x)e2 = self.encoder2(e1)e3 = self.encoder3(e2)e4 = self.encoder4(e3)# Centere4 = self.dblock(e4)e4 = self.spp(e4)# Decoderd4 = torch.cat([self.decoder4(e4), e3], 1)d4 = self.channelmeanmaxattention1(d4)d4 = self.spatialattention1(d4)d3 = torch.cat([self.decoder3(d4), e2], 1)d3 = self.channelmeanmaxattention2(d3)d3 = self.spatialattention2(d3)d2 = torch.cat([self.decoder2(d3), e1], 1)d2 = self.channelmeanmaxattention3(d2)d2 = self.spatialattention3(d2)d1 = self.decoder1(d2)out = self.finaldeconv1(d1)out = self.finalrelu1(out)out = self.finalconv2(out)out = self.finalrelu2(out)out = self.finalconv3(out)return d4, d3, d2

这篇关于论文笔记(含代码)Tumor attention networks: Better feature selection, better tumor segmentation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/401721

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.