深入解析SSD Wear Leveling磨损均衡技术:如何让你的硬盘更长寿?

2023-11-21 08:20

本文主要是介绍深入解析SSD Wear Leveling磨损均衡技术:如何让你的硬盘更长寿?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

SSD的存储介质是什么,它就是NAND闪存。那你知道NAND闪存是怎么工作的吗?其实,它就是由很多个晶体管组成的。这些晶体管里面存储着电荷,代表着我们的二进制数据,要么是“0”,要么是“1”。NAND闪存原理上是一个CMOS管,有两个栅极,一个是控制栅极(Control Gate), 一个是浮栅(Floating Gate). 浮栅的作用就是存储电荷,而浮栅与沟道之间的氧化层(Oxide Layer)的好坏决定着浮栅存储电荷的可靠性,也就是NAND闪存的寿命

图片

目前市面上主要流通的就是4种NAND类型:SLC、MLC、TLC、QLC。随着每个寿命从高到低依次是SLC>MLC>TLC>QLC.

图片

SSD的闪存芯片并非完美无缺。它们有一个共同的“短板”——寿命受限于闪存单元的磨损。在SSD中,每个闪存单元都有一定的寿命,通常为几万次到几百万次的写入。当一个单元被写满时,它就会被标记为“坏块”,不再用于存储数据。这种磨损效应会导致SSD的性能下降,甚至完全失效。

在现实应用过程中,SSD主控在NAND闪存写入数据时,并非均匀等机会的写入NAND闪存的每一个区块(Block)。借用宋小宝的经典桥段,SSD主控很难做到“雨露均沾”,而是很大程度可能会“独宠”一些NAND闪存区块。但是这样的“独宠”会严重透支NAND闪存区块寿命(NAND闪存区块的磨损-Write/Earse count会大大的增加,性能变差)

图片

为了解决这个问题,Wear Leveling技术应运而生。Wear Leveling是一种用于平衡SSD闪存单元磨损的技术,它的作用是尽可能将数据均匀地分布在各个闪存单元中,从而延长SSD的使用寿命。用更通俗的话来讲就是,每次写入的时候挑年轻力壮的区块, 年老的区块则颐养天年

SSD由多个独立的NAND Flash芯片组成,每个NAND Flash由一个块阵列组成,每个块由一系列的存储单元(页)组成。在将数据写入NAND Flash的存储单元之前,必须对该存储单元进行擦除,以便可以进行写入。最小的擦除单元是块,最小的写入或者读取单元是页。

图片

Wear Leveling的工作流程:Wear Leveling技术在SSD中通过设置两个块池,一个是空闲池,一个是数据池,来实现磨损平衡。当需要改写某个页时,并不直接写入原有位置,而是从空闲池中取出新的块,将现有的数据和需要改写的数据合并为新的块,一起写入新的空白块,原有的块被标识为无效状态(等待被擦除回收),新的块则进入数据池。后台任务会定时从数据池中取出无效数据的块,擦除后回收到空闲池中。

图片

根据实现方式的不同,Wear Leveling通常可以分为动态损耗均衡(Dynamic Wear Leveling)和静态损耗均衡(Static Wear Leveling)。

动态损耗均衡是一种只在数据被改写时触发的均衡技术。当一个数据块被更新时,动态损耗均衡算法会计算出各个闪存单元的损耗情况,并选择损耗最严重的单元进行数据迁移。这种方式的优点是处理速度快,对性能影响小;缺点是对静态数据的处理效果不佳。

图片

静态损耗均衡则是一种可以处理静态数据的均衡技术。它可以在后台运行,当发现损耗较低的闪存单元时,将其数据迁移到其他单元上,并将这些单元放入空闲池中备用。这种方式的优点是可以更好地保护静态数据;缺点是处理速度较慢,可能会对性能产生一定影响。

图片

在Windows环境,如果需要监控查看SSD坏块的健康状态,比较简单,只可以用DiskGenius工具可以做个全盘扫描。

图片

图片

Linux环境下,建议SATA SSD用smartctl工具、NVME SSD用nvme-cli进行long DST全盘自检测。

图片

最后,提前剧透一下:写这篇文章,其实是为了给后面一篇WL相关的文章做铺垫,预计本周内发布,敬请期待!

这篇关于深入解析SSD Wear Leveling磨损均衡技术:如何让你的硬盘更长寿?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/401065

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?