(实践)单层感知器——异或问题线性神经网络,Delta学习规则线性神经网络解决异或问题

本文主要是介绍(实践)单层感知器——异或问题线性神经网络,Delta学习规则线性神经网络解决异或问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

'''
异或
0^0 = 0
0^1 = 1
1^0 = 1
1^1 = 0
'''
import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,0,0],[1,0,1],[1,1,0],  [1,1,1]])
#标签
Y = np.array([[-1],[1],[1],[-1]])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random([3,1])-0.5)*2print(W)
#学习率设置
lr = 0.11
#神经网络输出
O = 0def update():global X,Y,W,lrO = np.sign(np.dot(X,W)) # shape:(3,1)W_C = lr*(X.T.dot(Y-O))/int(X.shape[0])W = W + W_C

在这里插入图片描述

for i in range(100):update()#更新权值print(W)#打印当前权值print(i)#打印迭代次数O = np.sign(np.dot(X,W))#计算当前输出  if(O == Y).all(): #如果实际输出等于期望输出,模型收敛,循环结束print('Finished')print('epoch:',i)break#正样本
x1 = [0,1]
y1 = [1,0]
#负样本
x2 = [0,1]
y2 = [0,1]#计算分界线的斜率以及截距
k = -W[1]/W[2]
d = -W[0]/W[2]
print('k=',k)
print('d=',d)xdata = (-2,3)plt.figure()
plt.plot(xdata,xdata*k+d,'r')
plt.scatter(x1,y1,c='b')
plt.scatter(x2,y2,c='y')
plt.show()#最后的结果我们发现它是执行了100次才跳出循环,说明无法用一条直线来进行非线性分类问题

在这里插入图片描述
线性神经网络
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,3,3],[1,4,3],[1,1,1],[1,0,2]])
#标签
Y = np.array([[1],[1],[-1],[-1]])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random([3,1])-0.5)*2print(W)
#学习率设置
lr = 0.11
#神经网络输出
O = 0def update():global X,Y,W,lrO = np.dot(X,W)  #因为线性用得函数是y=x所以这里可以直接写,而不是引用激活函数W_C = lr*(X.T.dot(Y-O))/int(X.shape[0])W = W + W_C

在这里插入图片描述

for _ in range(100):update()#更新权值#正样本x1 = [3,4]y1 = [3,3]#负样本x2 = [1,0]y2 = [1,2]#计算分界线的斜率以及截距k = -W[1]/W[2]d = -W[0]/W[2]print('k=',k)print('d=',d)xdata = (0,5)plt.figure()plt.plot(xdata,xdata*k+d,'r')plt.scatter(x1,y1,c='b')plt.scatter(x2,y2,c='y')plt.show()

在这里插入图片描述
过程
在这里插入图片描述
Delta学习规则
在这里插入图片描述
在这里插入图片描述
梯度下降法——一维情况
在这里插入图片描述
梯度下降法——二维情况
在这里插入图片描述
在这里插入图片描述
解决异或问题
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,0,0,0,0,0],[1,0,1,0,0,1],[1,1,0,1,0,0],[1,1,1,1,1,1]])
#标签
Y = np.array([-1,1,1,-1])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random(6)-0.5)*2print(W)
#学习率设置
lr = 0.11
#计算迭代次数
n = 0
#神经网络输出
O = 0def update():global X,Y,W,lr,nn+=1O = np.dot(X,W.T)  #因为线性用得函数是y=x所以这里可以直接写,而不是引用函数W_C = lr*((Y-O.T).dot(X))/int(X.shape[0])W = W + W_C

在这里插入图片描述

for _ in range(1000):update()#更新权值
#     print(W)#打印当前权值
#     print(n)#打印当前迭代次数# -0.1,0.1,0.2,-0.2#-1,1,1,-1
#     o = np.sign(np.dot(X,W.T))#计算当前输出
#     if(O == Y.T).all(): #如果实际输出等于期望输出,模型收敛,循环结束
#         print('Finished')
#         print('epoch:',n)
#         break#正样本
x1 = [0,1]
y1 = [1,0]
#负样本
x2 = [0,1]
y2 = [0,1]#计算分界线的斜率以及截距
#     k = -W[1]/W[2]
#     d = -W[0]/W[2]
#     print('k=',k)
#     print('d=',d)def calculate(x,root):a = W[5]b = W[2]+x*W[4]c = W[0]+x*W[1]+x**2*W[3]if root==1:return (-b+np.sqrt(b*b-4*a*c))/(2*a)if root==2:return (-b-np.sqrt(b*b-4*a*c))/(2*a)xdata = np.linspace(-1,2)plt.figure()plt.plot(xdata,calculate(xdata,1),'r')
plt.plot(xdata,calculate(xdata,2),'r')plt.scatter(x1,y1,c='b')
plt.scatter(x2,y2,c='y')
plt.show()print(W)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

o = np.dot(X,W.T)
print(o)

在这里插入图片描述

这篇关于(实践)单层感知器——异或问题线性神经网络,Delta学习规则线性神经网络解决异或问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/400511

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分