(实践)单层感知器——异或问题线性神经网络,Delta学习规则线性神经网络解决异或问题

本文主要是介绍(实践)单层感知器——异或问题线性神经网络,Delta学习规则线性神经网络解决异或问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

'''
异或
0^0 = 0
0^1 = 1
1^0 = 1
1^1 = 0
'''
import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,0,0],[1,0,1],[1,1,0],  [1,1,1]])
#标签
Y = np.array([[-1],[1],[1],[-1]])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random([3,1])-0.5)*2print(W)
#学习率设置
lr = 0.11
#神经网络输出
O = 0def update():global X,Y,W,lrO = np.sign(np.dot(X,W)) # shape:(3,1)W_C = lr*(X.T.dot(Y-O))/int(X.shape[0])W = W + W_C

在这里插入图片描述

for i in range(100):update()#更新权值print(W)#打印当前权值print(i)#打印迭代次数O = np.sign(np.dot(X,W))#计算当前输出  if(O == Y).all(): #如果实际输出等于期望输出,模型收敛,循环结束print('Finished')print('epoch:',i)break#正样本
x1 = [0,1]
y1 = [1,0]
#负样本
x2 = [0,1]
y2 = [0,1]#计算分界线的斜率以及截距
k = -W[1]/W[2]
d = -W[0]/W[2]
print('k=',k)
print('d=',d)xdata = (-2,3)plt.figure()
plt.plot(xdata,xdata*k+d,'r')
plt.scatter(x1,y1,c='b')
plt.scatter(x2,y2,c='y')
plt.show()#最后的结果我们发现它是执行了100次才跳出循环,说明无法用一条直线来进行非线性分类问题

在这里插入图片描述
线性神经网络
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,3,3],[1,4,3],[1,1,1],[1,0,2]])
#标签
Y = np.array([[1],[1],[-1],[-1]])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random([3,1])-0.5)*2print(W)
#学习率设置
lr = 0.11
#神经网络输出
O = 0def update():global X,Y,W,lrO = np.dot(X,W)  #因为线性用得函数是y=x所以这里可以直接写,而不是引用激活函数W_C = lr*(X.T.dot(Y-O))/int(X.shape[0])W = W + W_C

在这里插入图片描述

for _ in range(100):update()#更新权值#正样本x1 = [3,4]y1 = [3,3]#负样本x2 = [1,0]y2 = [1,2]#计算分界线的斜率以及截距k = -W[1]/W[2]d = -W[0]/W[2]print('k=',k)print('d=',d)xdata = (0,5)plt.figure()plt.plot(xdata,xdata*k+d,'r')plt.scatter(x1,y1,c='b')plt.scatter(x2,y2,c='y')plt.show()

在这里插入图片描述
过程
在这里插入图片描述
Delta学习规则
在这里插入图片描述
在这里插入图片描述
梯度下降法——一维情况
在这里插入图片描述
梯度下降法——二维情况
在这里插入图片描述
在这里插入图片描述
解决异或问题
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,0,0,0,0,0],[1,0,1,0,0,1],[1,1,0,1,0,0],[1,1,1,1,1,1]])
#标签
Y = np.array([-1,1,1,-1])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random(6)-0.5)*2print(W)
#学习率设置
lr = 0.11
#计算迭代次数
n = 0
#神经网络输出
O = 0def update():global X,Y,W,lr,nn+=1O = np.dot(X,W.T)  #因为线性用得函数是y=x所以这里可以直接写,而不是引用函数W_C = lr*((Y-O.T).dot(X))/int(X.shape[0])W = W + W_C

在这里插入图片描述

for _ in range(1000):update()#更新权值
#     print(W)#打印当前权值
#     print(n)#打印当前迭代次数# -0.1,0.1,0.2,-0.2#-1,1,1,-1
#     o = np.sign(np.dot(X,W.T))#计算当前输出
#     if(O == Y.T).all(): #如果实际输出等于期望输出,模型收敛,循环结束
#         print('Finished')
#         print('epoch:',n)
#         break#正样本
x1 = [0,1]
y1 = [1,0]
#负样本
x2 = [0,1]
y2 = [0,1]#计算分界线的斜率以及截距
#     k = -W[1]/W[2]
#     d = -W[0]/W[2]
#     print('k=',k)
#     print('d=',d)def calculate(x,root):a = W[5]b = W[2]+x*W[4]c = W[0]+x*W[1]+x**2*W[3]if root==1:return (-b+np.sqrt(b*b-4*a*c))/(2*a)if root==2:return (-b-np.sqrt(b*b-4*a*c))/(2*a)xdata = np.linspace(-1,2)plt.figure()plt.plot(xdata,calculate(xdata,1),'r')
plt.plot(xdata,calculate(xdata,2),'r')plt.scatter(x1,y1,c='b')
plt.scatter(x2,y2,c='y')
plt.show()print(W)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

o = np.dot(X,W.T)
print(o)

在这里插入图片描述

这篇关于(实践)单层感知器——异或问题线性神经网络,Delta学习规则线性神经网络解决异或问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/400511

相关文章

Android 12解决push framework.jar无法开机的方法小结

《Android12解决pushframework.jar无法开机的方法小结》:本文主要介绍在Android12中解决pushframework.jar无法开机的方法,包括编译指令、框架层和s... 目录1. android 编译指令1.1 framework层的编译指令1.2 替换framework.ja

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊