Python彩色图像旋转+平移变换数学原理及实现

2023-11-21 03:20

本文主要是介绍Python彩色图像旋转+平移变换数学原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

图像的几何变换在图像处理中被经常使用,其中图像旋转又是使用频率很高的变换,不仅应用于普通的图像的处理中,也会用于机器学习中的图像数据增强。图像旋转的数学原理很简单,就是简单的矩阵乘法。
本文给出了图像旋转的Python详细实现过程(纯手工),此外也给出了python内嵌函数roate的用法。

二、数学原理及公式

学过线性代数的童鞋都知道如下的矩阵表示旋转矩阵:
在这里插入图片描述
如果再加上平移,则可以用齐次坐标的表示形式:
在这里插入图片描述
假设旋转之前的坐标为(x,y),绕坐标原点旋转之后的坐标为(x*, y*),则旋转+平移变换公式的矩阵形式为:
在这里插入图片描述
对于图像旋转平移变换而言,其实就是像素的坐标旋转,像素跟着坐标走而已。

三、Python手工实现图像旋转+平移

1.单通道图像旋转平移变换
图像旋转是以图像中心为旋转轴,因此图像在旋转之前需要把像素坐标进行中心化,然后再进行变换,代码如下:

#im为单通道图像像素矩阵
#theta为旋转角度(单位是:度°)
#deltaX和deltaY是沿着两个坐标轴方向的平移量
#返回旋转+平移变换结果图像imRT
def SingleChannelRatTrans( im, theta, deltaX, deltaY ):[m, n] = np.shape( im )halfM = np.int( np.floor(m / 2) )halfN = np.int( np.floor(n / 2) )imRT = np.zeros( [ m, n] )angle = theta / 180 * 3.1415926for i in range(m):for j in range(n):ii = i - halfMjj = j - halfNi1 = round( ii * math.cos( angle ) + jj * math.sin( angle ) + halfM + deltaX )j1 = round( -ii * math.sin( angle ) + jj * math.cos( angle ) + halfN + deltaY )if i1 >= 0 and  i1 < m and j1 >= 0 and j1 < n:imRT[i][j] = im[i1][j1]imRT = imRT.clip( 0, 255 )#限制灰度值在0~255之间imRT = np.rint(imRT).astype('uint8')#设置像素的数据类型 return imRT

2.灰度图像或彩色图像旋转平移变换
灰度图像直接调用前面的单通道图像变换函数即可。
彩色图像针对R、G、B分量分别调用单通道图变换函数即可。

def ImageRatationTranslation( im, theta, deltaX, deltaY ):dims = np.shape( im )#获取图像维数lens = len( dims )   #lens值为2则是灰度图像,为3则是彩色图像if lens == 2:#单通道图像imRT = SingleChannelRatTrans( im, theta, deltaX, deltaY )if lens == 3:#三通道图像imr = im[ :, :, 0 ]img = im[ :, :, 1 ]imb = im[ :, :, 2 ]imrRT = SingleChannelRatTrans( imr, theta, deltaX, deltaY )imgRT = SingleChannelRatTrans( img, theta, deltaX, deltaY )imbRT = SingleChannelRatTrans( imb, theta, deltaX, deltaY )imRT = np.stack( ( imrRT, imgRT, imbRT ), 2  )return imRT

3.完整的图像旋转平移变换代码

#图像旋转+平移变换
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import math
#单通道图像的旋转+平移变换
#im为单通道图像像素矩阵
#theta为旋转角度(单位是:度°)
#deltaX和deltaY是沿着两个坐标轴方向的平移量
#返回旋转+平移变换结果图像
def SingleChannelRatTrans( im, theta, deltaX, deltaY ):[m, n] = np.shape( im )halfM = np.int( np.floor(m / 2) )halfN = np.int( np.floor(n / 2) )imRT = np.zeros( [ m, n] )angle = theta / 180 * 3.1415926for i in range(m):for j in range(n):ii = i - halfMjj = j - halfNi1 = round( ii * math.cos( angle ) + jj * math.sin( angle ) + halfM + deltaX )j1 = round( -ii * math.sin( angle ) + jj * math.cos( angle ) + halfN + deltaY )if i1 >= 0 and  i1 < m and j1 >= 0 and j1 < n:imRT[i][j] = im[i1][j1]imRT = imRT.clip( 0, 255 )#限制灰度值在0~255之间imRT = np.rint(imRT).astype('uint8')#设置像素的数据类型 return imRT
#图像旋转+平移变换,可以是灰度图像,也可以是彩色图像
#画布大小为原图像的大小,因此旋转平移之后会有部分像素看不到
def ImageRatationTranslation( im, theta, deltaX, deltaY ):dims = np.shape( im )#获取图像维数lens = len( dims )   #lens值为2则是灰度图像,为3则是彩色图像if lens == 2:#单通道图像imRT = SingleChannelRatTrans( im, theta, deltaX, deltaY )if lens == 3:#三通道图像imr = im[ :, :, 0 ]img = im[ :, :, 1 ]imb = im[ :, :, 2 ]imrRT = SingleChannelRatTrans( imr, theta, deltaX, deltaY )imgRT = SingleChannelRatTrans( img, theta, deltaX, deltaY )imbRT = SingleChannelRatTrans( imb, theta, deltaX, deltaY )imRT = np.stack( ( imrRT, imgRT, imbRT ), 2  )return imRTdef main():im = np.array( Image.open('dog.jpg', 'r') )theta = -45imRT = ImageRatationTranslation( im, theta, 10, -80 )plt.figure()plt.imshow( im, cmap = 'gray' )plt.axis( 'off' )plt.figure()plt.imshow( imRT, cmap = 'gray' )plt.axis( 'off' )if __name__ == '__main__':main()

运行结果:
在这里插入图片描述
在这里插入图片描述

四、Python内嵌的命令rotate

语法规则:
output = im.rotate( angle, method )
其中im是图像矩阵,可以是单通道,也可以是多通道
angle是旋转角度,单位是度°,正值为逆时针,负值为顺时针
method是插值方法,可以是nearest、bilinear等
output是旋转之后的图像。
例如:

im = Image.open('dog.jpg', 'r')
imRT = im.rotate( 45, Image.NEAREST )
plt.figure()
plt.imshow( imRT, cmap = 'gray' )
plt.axis( 'off' )

运行结果如下:
在这里插入图片描述

这篇关于Python彩色图像旋转+平移变换数学原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/399476

相关文章

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac