Python爬取拉勾网职位 - 分析学历与薪资关系及技能词云

2023-11-20 23:10

本文主要是介绍Python爬取拉勾网职位 - 分析学历与薪资关系及技能词云,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python拉勾网职位爬取及数据分析可视化

文章目录

      • Python拉勾网职位爬取及数据分析可视化
        • 1.工具准备
          • (1)安装第三方库
          • (2)安装及配置Chromedriver无头浏览器
          • (3)谷歌浏览器xpath插件安装及配置
          • (4)使用Pycharm
        • 2.爬取准备
          • (1)分析网站数据获取方式
          • (2)选择爬取方式
        • 3.数据爬取及提取保存
          • (1)爬取器
          • (2)解析器
          • (3)下载器
        • 4.数据分析及可视化
        • (1)分析器及可视化
        • 5.爬取数据
          • (1)==主函数==
          • (2)运行程序

1.工具准备
(1)安装第三方库

pip install selenium
pip install lxml
pip install matplotlib
pip install numpy
pip install wordcloud
pip install xlwt
pip install xlrd

(2)安装及配置Chromedriver无头浏览器
  • 请参考另一篇博客

  • 或者参照下面链接:

谷歌无头浏览器下载:谷歌无头浏览器下载
谷歌无头浏览器版本对照: 谷歌无头浏览器版本对照
查看已安装谷歌浏览器版本:chrome://version
谷歌无头浏览器安装及配置:谷歌无头浏览器安装及配置
谷歌无头浏览器操作:
https://www.cnblogs.com/jieliu8080/p/10636355.html
https://www.cnblogs.com/BigFishFly/p/6380024.html
https://blog.csdn.net/chang995196962/article/details/93712385

注意:谷歌浏览器与Chromedriver的版本对应关系

(3)谷歌浏览器xpath插件安装及配置

谷歌xpath插件安装教程: 谷歌xpath插件安装教程

(4)使用Pycharm

环境: pyhton 3.5-64 bit

2.爬取准备
(1)分析网站数据获取方式
  1. 打开网页

拉勾网
拉勾网主页
输入搜索内容 “数据挖掘” ,跳转到对应网页。

拉勾网搜索

  • 分析页面跳转:职位信息无需登录就可通过搜索得到,给数据抓取提供了方便
  • 分析网址信息:职位搜索可以通过更改拼接网址获得

https://www.lagou.com/jobs/list_%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98?labelWords=&fromSearch=true&suginput=

  • 查看网页源码:发现无职位信息,即职位信息是通过ajax动态加载的
  • 抓包分析:利用谷歌开发者工具,抓包分析得到动态数据文件
    抓包1
  • 查看头部信息:获得数据请求方式
    请求方式
    请求方式
  • 构建Post请求获取数据:IP被封禁
    post请求
    代码:
# 建立会话发起post请求
import requests
s = requests.session()
url = 'https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false'
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.132 Safari/537.36',
}
form_data = {'first': 'true','pn': '1','kd': '大数据',
}
r = s.post(url = url,data = form_data,headers = headers)
print(r.text)
s.close()

表情包

(2)选择爬取方式

不如直接干脆地爬取数据,选择终极爬取方法:selenium+无头浏览器Chromedriver。安装第三方库,配置环境,准备爬取。

biaoqingbao

3.数据爬取及提取保存
  • 导入使用到的库及配置环境等

from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from lxml import etree
import urllib.parse
import xlwt,xlrd
from matplotlib import pyplot as plt
from pylab import mpl
import numpy as np
import wordcloud
import time,datetime
# from selenium.webdriver.support.wait import WebDriverWait
# from selenium.webdriver.support import expected_conditions as EC
# from selenium.webdriver.common.by import Bychrome_options = Options()
#后面的两个是固定写法 用于隐藏浏览器界面
chrome_options.add_argument('--headless')
chrome_options.add_argument('--disable-gpu')
# 设置user-agent
user_ag='Win7+ie9:Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 2.0.50727; SLCC2; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.3; .NET4.0C; Tablet PC 2.0; .NET4.0E)'
chrome_options.add_argument('user-agent=%s'%user_ag)
# 构建浏览器对象
path = r'C:\Users\Administrator\AppData\Local\Google\Chrome\Application\chromedriver.exe'
browser = webdriver.Chrome(executable_path=path,chrome_options=chrome_options)
url_part = 'https://www.lagou.com/jobs/list_{}/p-city_0?&cl=false&fromSearch=true&labelWords=&suginput='
# 设置全局变量info,用于接收缓存中间数据
info = {'job':[],'salary':[],'company':[],'adress':[],'scale':[],'treatment':[],'education':[],'skill':[]
}
(1)爬取器

设置等待时间:必须设置等待时间,防止弹出登录窗口,绕开反爬机制。经过试验,8秒最佳。


# 爬取器
class spider(object):def __init__(self,url_part,key_word):self.url_part = url_partself.key_word = key_worddef build_url(self):key_word = urllib.parse.quote(self.key_word)url = self.url_part.format(key_word)browser.get(url)html = etree.HTML(browser.page_source)# 隐式的等待browser.implicitly_wait(3)# 消除弹窗elem1 = html.xpath('//div[@class="body-box"]/div[@class="body-btn"]')[0]# elem2 = html.xpath('//div[@class="modal-footer"]/button[@class="cancelBtn"]')[0]try:if elem1 is not None:browser.find_element_by_xpath('//div[@class="body-box"]/div[@class="body-btn"]').click()except:pass# if elem2 is not None:#     browser.find_element_by_xpath('//div[@class="modal-footer"]/button[@class="cancelBtn"]').click()# time.sleep(2)return urldef get_html(self,html):if html!='':# 点击翻页elem = browser.find_element_by_xpath('//div[@id="s_position_list"]/div[@class="item_con_pager"]/div/span[last()]').click()# 显式等待# WebDriverWait(browser, 20, 0.5).until(EC.presence_of_all_elements_located((By.CLASS_NAME,'pager_container')))# 设置足够等待时间,避免被识别弹出登录窗口time.sleep(8)# 获取动态加载后的网页html = etree.HTML(browser.page_source)return html
(2)解析器

# 解析器
class parser(object):def get_data(self,html):# 筛选并缓存数据info['job'] = info['job']+html.xpath('//a/h3/text()')info['salary'] = info['salary']+html.xpath('//div[@class="li_b_l"]/span[@class="money"]/text()')info['company'] = info['company']+html.xpath('//div[@class="company_name"]/a/text()')info['adress'] = info['adress']+html.xpath('//span[@class="add"]/em/text()')info['scale'] = info['scale']+html.xpath('//div[@class="industry"]/text()')info['treatment'] = info['treatment']+html.xpath('//div[@class="li_b_r"]/text()')info['education'] = info['education']+html.xpath('//div[@class="li_b_l"]/text()')info['skill'] = info['skill']+html.xpath('//div//li/div[@class="list_item_bot"]/div[@class="li_b_l"]/span/text()')def pure_data(self):# 去除冗杂数据,主要去除换行、空格以及空元素scale = info['scale']education = info['education']for i in range(0,len(scale)):scale[i] = scale[i].strip()for i in range(0,len(education)):education[i] = education[i].strip()education = [i for i in education if(len(str(i))!=0)]info['scale'] = scaleinfo['education'] = education
(3)下载器
# 下载器
class saver(object):def save_data(self,key_word):# 创建工作簿book = xlwt.Workbook(encoding='utf-8')# 创建表格job_data = book.add_sheet('job_data')# 写入数据title = ['序号','职位名称','薪资','公司名称','地址','公司规模','公司待遇','学历要求']# 写入标题for i in range(len(title)):job_data.write(0,i,title[i])for i in range(len(info['job'])):job_data.write(i+1,0,i)job_data.write(i+1,1,info['job'][i])job_data.write(i+1,2,info['salary'][i])job_data.write(i+1,3,info['company'][i])job_data.write(i+1,4,info['adress'][i])job_data.write(i+1,5,info['scale'][i])job_data.write(i+1,6,info['treatment'][i])job_data.write(i+1,7,info['education'][i])# 保存到一个xls文件中book.save('{}-{}.xls'.format(key_word,datetime.date.today()))return True
4.数据分析及可视化

分析学历与薪资关系及技能词云

(1)分析器及可视化
# 分析器及可视化class analy_visual(object):
# 数据分析def data_com(self,key_word):# 设置默认字体,解决中文显示乱码问题mpl.rcParams['font.sans-serif'] = ['SimHei']# 读取xls数据,获取对应工作薄job_book = xlrd.open_workbook('{}-{}.xls'.format(key_word,datetime.date.today()))# 获取对应工作表job_table = job_book.sheet_by_name('job_data')# 获取行数据值,返回列表salary = job_table.col_values(2,1)education = job_table.col_values(7,1)# 数据格式化整理(薪资单位:k)data = {'大专':[],'本科':[],'硕士':[],'博士':[],'不限':[]}for i in range(len(salary)):salary[i] = salary[i].replace('k','').replace('以上','').split('-')if len(salary[i])==1:salary[i].append(0)salary[i] = [int(salary[i][0]),int(salary[i][1])]for i in range(len(education)):education[i] = education[i].replace(' ','').split('/')data[education[i][1]].append(salary[i])# 创建数组data1 = np.array(data['大专'])data2 = np.array(data['本科'])data3 = np.array(data['硕士'])data4 = np.array(data['博士'])data5 = np.array(data['不限'])# 数据计算mean_m = []max_m = []min_m = []Doc = [data1,data2,data3,data4,data5]for doc in Doc:if doc.size != 0:min_m.append(doc.min())max_m.append(doc.max())mean_m.append(doc.mean())else:min_m.append(0)max_m.append(0)mean_m.append(0)min_m = np.array(min_m)max_m = np.array(max_m)mean_m = np.array(mean_m)# 设置横坐标刻度值x = np.array([1,2,3,4,5])plt.xticks(x,['大专','本科','硕士','博士','不限'])# 显示标题plt.title('{}-学历与薪资关系(折线图)'.format(key_word))# 绘制折线图plt.plot(x,min_m,marker = 'o',label='最小值')plt.plot(x,max_m,marker = 's',label = '最大值')plt.plot(x,mean_m,marker = '^',label = '均值')# x、y轴标签plt.xlabel('学历类别')plt.ylabel('薪资/单位:千元')#设置数字标签for a,b in zip(x,min_m):plt.text(a,b+0.05,'%.1f'%b,ha='center',va='bottom',fontsize=12)for a,b in zip(x,max_m):plt.text(a,b+0.05,'%.1f'%b,ha='center',va='bottom',fontsize=12)for a,b in zip(x,mean_m):plt.text(a,b+0.05,'%.1f'%b,ha='center',va='bottom',fontsize=12)# 显示图例plt.legend()# 保存图形文件plt.savefig('{}-数据对比.png'.format(key_word))# plt.show()return True
# 生成词云def pro_wcloud(self,key_word):# 生成词本text = ' '.join(info['skill'])# 设置背景及字体路径,font_path的设置以显示中文imag = wordcloud.WordCloud(background_color = 'white',max_words = 100,font_path = 'C:\Windows\Fonts\simfang.ttf',width = 800,height = 600)# 根据文本生成词云imag.generate(text)# 输出词云imag.to_file("{}-技能词云.png".format(key_word))return True
5.爬取数据
(1)主函数
# 主函数
def main():try:key_word = input("请输入要搜索的职业:")print("------开始爬取 {} ------".format(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))))# 生成爬虫对象 lagou_spiderlagou_spider = spider(url_part,key_word)# 生成解析器对象 lagou_parserlagou_parser = parser()# 生成下载器对象 lagou_saverlagou_saver = saver()# 生成数据分析器及可视化对象lagou_analy = analy_visual()html = ''# 构建URL 并初始化到该网址url = lagou_spider.build_url()html = lagou_spider.get_html(html)# 获取结果页数pages = int(html.xpath('//div[@id="s_position_list"]/div[@class="item_con_pager"]/div/span[last()-1]/text()')[0])# 循环爬取内容for page in range(1,pages+1):print("正在爬取第{}/{}页数据…………".format(page,pages))lagou_parser.get_data(html)html = lagou_spider.get_html(html)print("结束爬取第{}/{}页数据!".format(page,pages))# 关闭浏览器browser.close()# 保存数据到本地print("正在保存数据…………")lagou_parser.pure_data()if lagou_saver.save_data(key_word):print("数据保存成功!")# 数据分析成功if (lagou_analy.data_com(key_word = key_word)):print('------>数据分析及可视化成功!<------')if (lagou_analy.pro_wcloud(key_word = key_word)):print('------>生成词云成功!<------')print("------结束爬取 {} ------".format(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))))except:print("未知错误!!!")
if __name__ == '__main__':main()
(2)运行程序

搜索‘数据挖掘’招聘信息
运行

爬取结束
运行结束

爬取结果

  • 一共450条数据。
    爬取结果

数据分析结果
数据分析结果

结论:从上面折线图可以看出薪资与学历成正比。

上述结论只是整体趋势,不代表个例。至于要不要考取更高的学历来换取更优的工作,还要考虑很多因素。当然,学历越高薪资相对越丰厚。所以还是要好好学习,这亦是一个知识能够变现的时代。

学习

技能词云

数据挖掘词云
表情包
学海无涯,回头是岸!

拆掉思维的墙儿

这篇关于Python爬取拉勾网职位 - 分析学历与薪资关系及技能词云的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/398110

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的