第六章 图(下)【图的应用,重难点】

2023-11-20 22:15
文章标签 应用 第六章 重难点

本文主要是介绍第六章 图(下)【图的应用,重难点】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 最小生成树

 1.1 最小生成树的概念

  • 生成树:连通图的生成树是包含图中全部顶点的一个极小连通子图。 若图中顶点数为 n,则它的生成树含有 n-1 条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。

  • 最⼩⽣成树(最⼩代价树):对于一个带权连通无向图G =(V,E),生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。设R为G的所有生成树的集合,若T为R中边的权值之和最小的生成树,则T称为G的最小生成树(Minimum-Spannino-Tree,MST).。
  • 最小生成树可能有多个,但边的权值之和总是唯一且最小的。
  • 最小生成树的边数 =顶点数 -1。砍掉一条则不连通,增加一条边则会出现回路。
  • 如果一个连通图本身就是一棵树,则其最小生成树就是它本身。
  • 只有连通图才有生成树,非连通图只有生成森林。

 求最小生成树的两种方法

1.2 Prim算法(普里姆)

从某一个顶点开始构建生成树;每次将代价最小的新顶点纳入生成树,直到所有顶点都纳入为止。时间复杂度: O(V2)适合用于边稠密图。核心思想:贪心算法

同一顶点开始生成的最小生成树可能也不一样,但是最小代价是一样的

 

算法实现:

Prim 算法的实现思想:

1.初始:从V0开始,标记各节点是 否已加⼊树isJoin,各节点加⼊树 的最低代价,lowCost

2.  第1轮:循环遍历所有个结点,找 到lowCost最低的,且还没加⼊树 的顶点将该顶点加入树,再次循环遍历,更新还没加⼊的 各个顶点的lowCost值

3. 重复1,2,从V0开始,总共需要 n-1 轮处理,每⼀轮处理:循环遍历所有个结 点,找到lowCost最低的,且还没 加⼊树的顶点。 再次循环遍历,更新还没加⼊的 各个顶点的lowCost值,

每⼀轮时间复 杂度O(2n),总时间复杂度 O(n2),即O(|V|2)

void Prim(G, T)
{// T为空;// U = {w};while((V-U)! = NULL){设(u,v)为让u属于U,v属于(V-U)对最短边T = T U {(u,v)};    //边入树U = U U {v};        //顶点入树}
}//辅助数组:
isJoin[vexNum];    //标记各节点是否已加入树
lowCost[vexNum];    //各节点加入树的最小代价 != 权值,每次并入新节点后都需要更新

1.3 Kruskal算法(克鲁斯卡尔)

每次选择一条权值最小的边,使这条边的两头连通(原本已经连通的就不选)直到所有结点都连通。时间复杂度: O(|E|log|E|)适合用于边稀疏图。

算法实现:

 1. 初始:将各条边按权值排序

2.第1轮:检查第1条边的两个顶点是否 连通(是否属于同⼀个集合) 不连通,则连起来

2.第i轮:检查第i条边的两个顶点是否 连通(是否属于同⼀个集合)不连通,则连起来,已连通,则跳过

共执⾏ e 轮,每轮判断两个顶点是 否属于同⼀集合,需要 O(log2e) 总时间复杂度 O(elog2e)

void Kruskal(v, T)
{T = v;numS = n;    //连通分量数while(numS>1){从E中选取权值最小的边(u,v);if(v和u属于不同连通分量){T = T U {(v,u)};    //边入树numS--;}}
}

2. 最短路径问题

2.1 无权图的单源最短路径问题——BFS算法

 ⽆权图可以视为⼀种特殊的带权图,只是每条边的权值都为1

从2出发寻找无权图的单源最短路径

算法实现:

使用 BFS算法求无权图的最短路径问题,需要使用三个数组

  • d[]数组用于记录顶点 u 到其他顶点的最短路径。
  • path[]数组用于记录最短路径从那个顶点过来。

  • visited[]数组用于记录是否被访问过。

在visit⼀个顶点时,修改其最短路径⻓度 d[ ] 并在 path[ ] 记录前驱结点

代码实现:

#define MAX_LENGTH 2147483647			//地图中最大距离,表示正无穷// 求顶点u到其他顶点的最短路径
void BFS_MIN_Disrance(Graph G,int u){for(i=0; i<G.vexnum; i++){visited[i]=FALSE;				//初始化访问标记数组d[i]=MAX_LENGTH;				//初始化路径长度path[i]=-1;						//初始化最短路径记录}InitQueue(Q);						//初始化辅助队列d[u]=0;visites[u]=TRUE;EnQueue(Q,u);while(!isEmpty[Q]){					//BFS算法主过程DeQueue(Q,u);					//队头元素出队并赋给ufor(w=FirstNeighbor(G,u);w>=0;w=NextNeighbor(G,u,w)){if(!visited[w]){d[w]=d[u]+1;path[w]=u;visited[w]=TRUE;EnQueue(Q,w);			//顶点w入队}}}
}

2.2 带权图的单源最短路径问题——Dijkstra算法

相关概念背景

带权路径⻓度——当图是带权图时,⼀条路径上所有边的权值之和,称为该路径的带权路径⻓度

  1. BFS算法的局限性:BFS算法求单源最短路径只适⽤于⽆权图,或所有边的权值都相同的图。
  2. Dijkstra算法能够很好的处理带权图的单源最短路径问题,但不适⽤于有负权值的带权图。

算法实现:

使用 Dijkstra算法求最短路径问题,需要使用三个数组:

  • final[]数组用于标记各顶点是否已找到最短路径。
  • dist[]数组用于记录各顶点到源顶点的最短路径长度。
  • path[]数组用于记录各顶点现在最短路径上的前驱。

 1. 初始:从V0开始,初始化三个数组信息

2. 第1轮:循环遍历所有结点,找到还没确定最短 路径,且dist 最⼩的顶点Vi,令final[i]=ture,检查所有邻接⾃ Vi 的顶点,若其 final 值为false, 则更新 dist 和 path 信息

 ​​​​​​

3.重复过程2,n-1轮处理,直到所有顶点的final 值为true.并更新完成

4.  使⽤数组信息

代码实现:

#define MAX_LENGTH = 2147483647;// 求顶点u到其他顶点的最短路径
void BFS_MIN_Disrance(Graph G,int u){for(int i=0; i<G.vexnum; i++){		//初始化数组final[i]=FALSE;dist[i]=G.edge[u][i];if(G.edge[u][i]==MAX_LENGTH || G.edge[u][i] == 0)path[i]=-1;elsepath[i]=u;final[u]=TREE;}for(int i=0; i<G.vexnum; i++){int MIN=MAX_LENGTH;int v;// 循环遍历所有结点,找到还没确定最短路径,且dist最⼩的顶点vfor(int j=0; j<G.vexnum; j++){if(final[j]!=TREE && dist[j]<MIN){MIN = dist[j];v = j;}}final[v]=TREE;// 检查所有邻接⾃v的顶点路径长度是否最短for(int j=0; j<G.vexnum; j++){if(final[j]!=TREE && dist[j]>dist[v]+G.edge[v][j]){dist[j] = dist[v]+G.edge[v][j];path[j] = v;}}}
}

 时间复杂度: O(n2)即O(|V|2)

2.3 各顶点间的最短路径问题——Floyd算法 

2.3.1 Floyd算法基本思想:

求出每⼀对顶点之间的最短路径,使⽤动态规划思想,将问题的求解分为多个阶段。

 

2.3.2 Floyd算法应用范围

可以⽤于负权值带权图,但是不能解决带有“负权回路”的图(有负权值的边组成回路),这种图有可能没有最短路径。

 算法实现:

  1. Floyd算法使用到两个矩阵:

    1. dist[][]:目前各顶点间的最短路径。
    2. path[][]:两个顶点之间的中转点。

 

递推一个n阶方阵序列A^{-1}A^{0},...,A^{k},...,A^{n-1},其中A^{k}[i][j]表示从顶点vi到vj的长度,k表示绕行第k个顶点的运算步骤,利用path^{k}记录节点的中转情况。 

 步骤:①初始时若v0到vi之间有边,则记录其最短路径为该边权值,若不存在则记∞

            ②尝试允许经过v0顶点中转,更新顶点间最短路径

            ③依此尝试允许经过v1,v2,...,vk顶点中转,并不断更新最短路径,,直到允许v(n-1)顶点都经过中转,方阵 [i][j] = Min{[i][j] , [i][k]+[k][j]}

            ④经过n次迭代,最终[i][j]就是vi到vj的最短路径长度

 代码实现:

//初始化矩阵A和path
...
for(int k=0; k<n; k++)
{for(int i=0; i<n; i++){for(int j=0; j<n; j++){if(A[i][j]>A[i][k]+A[k][j]){A[i][j] = A[i][k]+A[k][j];    //更新最短路径长度path[i][j] = k;               //中转点}}}
}

算法分析:时间复杂度——O(|V|^{3}),空间复杂度——O(|V|^{2})

这篇关于第六章 图(下)【图的应用,重难点】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/397813

相关文章

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序

Java应用如何防止恶意文件上传

《Java应用如何防止恶意文件上传》恶意文件上传可能导致服务器被入侵,数据泄露甚至服务瘫痪,因此我们必须采取全面且有效的防范措施来保护Java应用的安全,下面我们就来看看具体的实现方法吧... 目录恶意文件上传的潜在风险常见的恶意文件上传手段防范恶意文件上传的关键策略严格验证文件类型检查文件内容控制文件存储

CSS3 布局样式及其应用举例

《CSS3布局样式及其应用举例》CSS3的布局特性为前端开发者提供了无限可能,无论是Flexbox的一维布局还是Grid的二维布局,它们都能够帮助开发者以更清晰、简洁的方式实现复杂的网页布局,本文给... 目录深入探讨 css3 布局样式及其应用引言一、CSS布局的历史与发展1.1 早期布局的局限性1.2

在React聊天应用中实现图片上传功能

《在React聊天应用中实现图片上传功能》在现代聊天应用中,除了文字和表情,图片分享也是一个重要的功能,本文将详细介绍如何在基于React的聊天应用中实现图片上传和预览功能,感兴趣的小伙伴跟着小编一起... 目录技术栈实现步骤1. 消息组件改造2. 图片预览组件3. 聊天输入组件改造功能特点使用说明注意事项

Redis中RedisSearch使用及应用场景

《Redis中RedisSearch使用及应用场景》RedisSearch是一个强大的全文搜索和索引模块,可以为Redis添加高效的搜索功能,下面就来介绍一下RedisSearch使用及应用场景,感兴... 目录1. RedisSearch的基本概念2. RedisSearch的核心功能(1) 创建索引(2