仿射映射

2023-11-20 20:40
文章标签 映射 仿射

本文主要是介绍仿射映射,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 几何上定义为两个 向量空间之间的一个仿射变换或者仿射映射(来自拉丁语,affinis,“和。..相关”)由一个线性变换接上一个平移组成。

目录

1原理

2示例

3相关例子

1原理编辑

在有限维的情况,每个仿射变换可以由一个矩阵A和一个向量b给出,它可以写作A和一个附加的列b。一个仿射变换对应于一个矩阵和一个向量的乘法,而仿射变换的复合对应于普通的 矩阵乘法,只要加入一个额外的行到矩阵的底下,这一行全部是0除了最右边是一个1,而列向量的底下要加上一个1。
AffineTransform类描述了一种 二维仿
仿射变换流程图

仿射变换流程图

射变换的功能,它是一种二维 坐标到二维坐标之间的 线性变换,保持二维图形的“平直性”(译注: straightness,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:par
常用的仿射变换:旋转、倾斜、平移、缩放

常用的仿射变换:旋转、倾斜、平移、缩放

allelness,其实是指保二维图形间的相对位置关系不变, 平行线还是平行线,而直线上点的位置顺序不变,另特别注意向量间夹角可能会发生变化。)仿射变换可以通过一系列的原子变换的复合来实现,包括: 平移(Translation)、 缩放(Scale)、 翻转(Flip)、 旋转(Rotation)和 错切(Shear)。
此类变换可以用一个3×3的矩阵来表示,其最后一行为(0, 0, 1)。该 变换矩阵将原坐标(x, y)变换为新坐标(x', y'),这里原坐标和新坐标皆视为最末一行为(1)的三维列向量,原列向量左乘变换矩阵得到新的列向量:

2示例编辑

几种典型的仿射变换:
public static  AffineTransform getTranslateInstance(doubl
仿射变换-例

仿射变换-例

e tx, double ty)
平移变换,将每一点移动到(x+tx, y+ty),变换矩阵为:
[ 1 0 tx ]
[ 0 1 ty ]
[ 0 0 1 ]
(译注:平移变换是一种“ 刚体变换”,rigid-body transformation,中学学过的物理,都知道啥叫“刚体”吧,就是不会产生形变的理想物体,平移当然不会改变二维图形的形状。同理,下面的“ 旋转变换”也是 刚体变换,而“缩放”、“错切”都是会改变图形形状的。)
public static AffineTransform getScaleInstance(double sx, double sy)
缩放变换,将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为:
[ sx 0 0 ]
[ 0 sy 0 ]
[ 0 0 1 ]
当sx=sy时,称为尺度缩放,sx不等于sy时,这就是我们平时所说的拉伸变换。
public static AffineTransform getShearInstance(double shx, double shy)
剪切变换,变换矩阵为:
[ 1 shx 0 ]
[ shy 1 0 ]
[ 0 0 1 ]
相当于一个横向剪切与一个纵向剪切的复合
[ 1 0 0 ][ 1 shx 0 ]
[ shy 1 0 ][ 0 1 0 ]
[ 0 0 1 ][ 0 0 1 ]
(译注:“剪切变换”又称“错切变换”,指的是类似于 四边形不稳定性那种性质,街边小商店那种铁拉门都见过吧?想象一下上面铁条构成的菱形拉动的过程,那就是“错切”的过程。)
public static AffineTransform getRotateInstance(double theta)
典型的仿射变换-平移变换

典型的仿射变换-平移变换

典型的仿射变换-缩放变换

典型的仿射变换-缩放变换

典型的仿射变换-剪切变换

典型的仿射变换-剪切变换

典型的仿射变换-旋转变换

典型的仿射变换-旋转变换

典型的仿射变换-旋转变换

典型的仿射变换-旋转变换

 

3相关例子编辑

旋转变换1,目标图形围绕原点逆时针旋转theta弧度,变换矩阵为:
[ cos(theta) -sin(theta) 0 ]
[ sin(theta) cos(theta) 0 ]
[ 0 0 1 ]
public static AffineTransform getRotateInstance(double theta, double x, double y)
旋转变换2,目标图形以(x, y)为轴心逆时针旋转theta弧度,变换矩阵为:
[ cos(theta) -sin(theta) x-x*cos+y*sin]
[ sin(theta) cos(theta) y-x*sin-y*cos ]
[ 0 0 1 ]
相当于两次平移变换与一次原点 旋转变换的复合:
[1 0 x][cos(theta) -sin(theta) 0][1 0- x]
[0 1 y][sin(theta) cos(theta) 0][0 1 -y]
[0 0 1 ][ 0 0 1 ][0 0 1]
这里是以空间任一点为 圆心旋转的情况。
词条图册 更多图册

 

转载于:https://www.cnblogs.com/yulang314/p/3745090.html

这篇关于仿射映射的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397294

相关文章

Java继承映射的三种使用方法示例

《Java继承映射的三种使用方法示例》继承在Java中扮演着重要的角色,它允许我们创建一个类(子类),该类继承另一个类(父类)的所有属性和方法,:本文主要介绍Java继承映射的三种使用方法示例,需... 目录前言一、单表继承(Single Table Inheritance)1-1、原理1-2、使用方法1-

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

Java中基于注解的代码生成工具MapStruct映射使用详解

《Java中基于注解的代码生成工具MapStruct映射使用详解》MapStruct作为一个基于注解的代码生成工具,为我们提供了一种更加优雅、高效的解决方案,本文主要为大家介绍了它的具体使用,感兴趣... 目录介绍优缺点优点缺点核心注解及详细使用语法说明@Mapper@Mapping@Mappings@Co

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

docker 重启容器且修改服务映射端口

要重启 Docker 容器并修改服务的映射端口,可以按照以下步骤进行操作: 1. 停止当前运行的容器 如果你想重新配置端口,通常需要先停止当前运行的容器。你可以使用以下命令停止容器: docker stop <container_name_or_id> 2. 删除现有容器 为了修改端口映射,你需要删除旧的容器并重新创建一个新的容器。首先运行以下命令删除停止的容器: docker rm

图像处理基础篇-镜像仿射透视

一.图像镜像 图像镜像是图像旋转变换的一种特殊情况,通常包括垂直方向和水平方向的镜像。水平镜像通常是以原图像的垂直中轴为中心,将图像分为左右两部分进行堆成变换。如图7-1所示: 垂直镜像通常是以原图像的水平中轴线为中心,将图像划分为上下两部分进行堆成变换的过程,示意图如图7-2所示。 在Python中主要调用OpenCV的flip()函数实现图像镜像变换,函数原型如下: dst =