Rust能力养成系列之(42):内存管理:引用计数智能指针(下) 火星小海马

本文主要是介绍Rust能力养成系列之(42):内存管理:引用计数智能指针(下) 火星小海马,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

接着上篇的内容,我们继续

 

Rc<T>

有所忘怀的读者,可以翻出上一篇再看一下。上篇提及要修改一种结构。这里有一种做法:那就是可以把Rc<T>利用downgrade方法降级到Weak<T>类型,后者也可以通过upgrade方法升级到前者类型。downgrade的方法总是有效的。但当在Weak<T>上调用upgrade时,实际值可能已经被删除,在这种情况下,将得到一个None。

这时在上篇末尾的代码中添加一个弱指针

// rc_weak.rsuse std::rc::Rc; 
use std::rc::Weak; #[derive(Debug)] 
struct LinkedList<T> { head: Option<Rc<LinkedListNode<T>>> 
} #[derive(Debug)] 
struct LinkedListNode<T> { next: Option<Rc<LinkedListNode<T>>>, prev: Option<Weak<LinkedListNode<T>>>, data: T 
} impl<T> LinkedList<T> { fn new() -> Self { LinkedList { head: None } } fn append(&mut self, data: T) -> Self { let new_node = Rc::new(LinkedListNode { data: data, next: self.head.clone(), prev: None }); match self.head.clone() { Some(node) => { node.prev = Some(Rc::downgrade(&new_node)); }, None => { } } LinkedList { head: Some(new_node) } } 
} fn main() { let list_of_nums = LinkedList::new().append(1).append(2).append(3); println!("nums: {:?}", list_of_nums); 
}

append方法增加了一些内容;现在,在返回新创建的head之前,我们需要更新当前head的前一个节点。看起来不错了,但还不够。编译器认为这是无效操作。

当然,可以让append接收一个对self的可变引用,但这意味着只有当所有节点的绑定都可变时,才能向列表追加,从而迫使整个结构成为可变的。而此处真正想要的是一种方法,使整个结构的一小部分是可变的,幸运的是,可以一个名为RefCell的方法。

于是改善步骤如下:

1.载入RefCell

use std::cell::RefCell; 

2 将RefCell中封装LinkedListNode

 #[derive(Debug)] struct LinkedListNode<T> { next: Option<Rc<LinkedListNode<T>>>, prev: RefCell<Option<Weak<LinkedListNode<T>>>>, data: T }

3 利用改变append方法来创建一个新的RefCell,并通过RefCell可变借来更新之前的引用:

fn append(&mut self, data: T) -> Self { let new_node = Rc::new(LinkedListNode { data: data, next: self.head.Clone(), prev: RefCell::new(None) }); match self.head.Clone() { Some(node) => { let mut prev = node.prev.borrow_mut(); *prev = Some(Rc::downgrade(&new_node)); }, None => { } } LinkedList { head: Some(new_node) } } 
} 

当使用RefCell borrows(借用)时,最好仔细考虑一下我们是否在以一种安全的方式在进行使用,因为在这方面的错误可能会导致运行时崩溃。然而,在这个实现中,很容易看到我们只有一个borrow,关闭块会立即进行丢弃行为。

此时代码可以编译通过。

 

内部可变性(Interior mutability)

如前所述,Rust通过在任何给定作用域只允许一个可变引用,用来保护开发者在编译时免受指针混叠问题(pointer aliasing problem )的困扰。然而,在某些情况下,会表现得过于严格,使得明知是安全的代码,由于严格的借用检查,不能通过编译器。对于这些情况,一种解决方案是将借用检查从编译时转移到运行时,这是通过内部可变性实现的。那么在讨论允许内部可变性的类型之前,我们需要理解内部可变性(interior mutability)和继承的可变性 ( inherited mutability)的概念:

  • 继承的可变性 ( inherited mutability),当使用&mut引用某个结构体时,体现为默认的可变性,这也意味着可以修改该结构的任何字段。
  • 内部可变性(interior mutability),在这种可变性中,即使有一个&SomeStruct引用到某种类型,如果字段的类型为Cell<T>或RefCell<T>,开发者也可以修改其字段。

 

内部的可变性允许稍微变通一下借用规则,但这也给开发者带来了负担,因为要确保在运行时不存在两个可变借用。当这些类型将对多个可变引用的检测从编译转移到运行时,如果存在对某个值的两个可变引用,就会出现panic报错。当向用户公开不可变API时,通常使用内部可变性,尽管API内部有可变部分。标准库有两种提供共享可变性的通用智能指针类型:Cell和RefCell。

 

Cell<T>

考虑一下这个代码,要求用两个对bag的可变引用来改变bag:

// without_cell.rsuse std::cell::Cell; #[derive(Debug)]
struct Bag { item: Box<u32>
} fn main() { let mut bag = Cell::new(Bag { item: Box::new(1) }); let hand1 = &mut bag;let hand2 = &mut bag;*hand1 = Cell::new(Bag {item: Box::new(2)});*hand2 = Cell::new(Bag {item: Box::new(2)});
}

当然,这是通不过去的

我们可以通过将bag值封装在一个Cell中来实现这一点,代码更新如下:

// cell.rsuse std::cell::Cell; #[derive(Debug)]
struct Bag { item: Box<u32>
} fn main() { let bag = Cell::new(Bag { item: Box::new(1) }); let hand1 = &bag;let hand2 = &bag;hand1.set(Bag { item: Box::new(2)}); hand2.set(Bag { item: Box::new(3)});
}

正如所期望的那样,这个代码可以通过,唯一增加的成本是必须多写一点。但是,额外的运行时成本为零,而且对可变对象的引用仍然是不可变的,还不错吧。

Cell<T>类型是一种智能指针类型,为变量值提供可变性,即使是在不可变引用之后,就效能而言,其最小的开销和最简易的API实现了这个功能:

  • Cell::new:该方法用于通过传递任意类型T来创建Cell类型的新实例
  • get:用该方法可以复制单元格中的值,但仅在被封装的类型T为复制类型时可用
  • set:修改内部值,即使是在不可变引用后面

 

RefCell<T>

如果需要为非复制类型提供类似单元格的特征(Cell-like features),那么可以使用RefCell类型。它使用了类似于借用的读/写模式,但将检查移动到运行时,这很方便,但不是零成本。RefCell分发对值的引用,而不是像Cell类型那样按值返回。看下如下代码:

// refcell_basics.rsuse std::cell::RefCell; #[derive(Debug)]
struct Bag { item: Box<u32>
} fn main() { let bag = RefCell::new(Bag { item: Box::new(1) }); let hand1 = &bag;let hand2 = &bag;*hand1.borrow_mut() = Bag { item: Box::new(2)}; *hand2.borrow_mut() = Bag { item: Box::new(3)};let borrowed = hand1.borrow();println!("{:?}", borrowed);
}

如上所见,可以从hand1和hand2中可变借用bag,尽管它们被声明为不可变变量。要修改bag中的项,我们在hand1和hand2上调用borrow_mut。之后,进行不可改变借用并打印内容。可以通过。

RefCell类型提供了以下两种借用方法:

  • borrow方法接收一个新的不可变引用
  • borrow_mut方法接收一个新的可变引用

 

现在,如果我们尝试在同一个作用域中调用这两个方法,将前面代码的最后一行更改为,结果如下,得到一个运行时的panic。

println!("{:?} {:?}", hand1.borrow(), hand1.borrow_mut());

这是因为具备排他性可变访问的所有权规则相同。但是,对于RefCell,这是在运行时检查的。对于这种情况,必须显式使用bare block来分隔借用,或者使用drop方法来删除引用。

 

内部可变性的用法

在前一节中,我们简化了使用Cell和RefCell的用法,开发者很可能不需要在实际代码中以这种形式进行应用。这里看看这些类型给带来的一些实际益处。

正如我们前面提到的,绑定的可变性不是细粒度的;一个值要么是不可变的,要么是可变的,如果它是一个结构体或枚举,那么包括所有字段。Cell和RefCell可以把一个不可变的东西变成可变的东西,也允许将一个不可变的结构的部分定义为可变的。

下面的代码用两个整数和一个sum方法扩展了一个结构体,以缓存sum的答案,并返回缓存的值(如果存在的话):

// cell_cache.rsuse std::cell::Cell; struct Point { x: u8, y: u8, cached_sum: Cell<Option<u8>> 
} impl Point { fn sum(&self) -> u8 { match self.cached_sum.get() { Some(sum) => { println!("Got from cache: {}", sum); sum }, None => { let new_sum = self.x + self.y; self.cached_sum.set(Some(new_sum)); println!("Set cache: {}", new_sum); new_sum } } } 
} fn main() { let p = Point { x: 8, y: 9, cached_sum: Cell::new(None) }; println!("Summed result: {}", p.sum()); println!("Summed result: {}", p.sum()); 
}

编译通过,结果如下,请读者对照结果再自习研读一下代码

 

结语

Rust采用低级系统编程(low-level systems programming)方法来进行内存管理,承诺可以达到类似C语言的性能,有时甚至更好。通过使用所有权、生存期和借用语义,它不需要垃圾收集器就能做到这一点,想来还是挺赞的。至此,已经讲了很多内容,在编程学习中,都是相对较难的内容。凡是熟悉Rust的人喜欢称自己为Rustacean,期待大家能成为资深的Rustacean。有关在运行时所有权管理的内容,真的需要花一些时间,来好好思考一下,这意味着可以开发性价比很高的程序,自然这是很值得的

 

主要参考和建议读者进一步阅读的文献

https://doc.rust-lang.org/book

深入浅出 Rust,2018,范长春

Rust编程之道,2019, 张汉东

The Complete Rust Programming Reference Guide,2019, Rahul Sharma,Vesa Kaihlavirta,Claus Matzinger

Hands-On Data Structures and Algorithms with Rust,2018,Claus Matzinger

Beginning Rust ,2018,Carlo Milanesi

Rust Cookbook,2017,Vigneshwer Dhinakaran

这篇关于Rust能力养成系列之(42):内存管理:引用计数智能指针(下) 火星小海马的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/396093

相关文章

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

Linux之UDP和TCP报头管理方式

《Linux之UDP和TCP报头管理方式》文章系统讲解了传输层协议UDP与TCP的核心区别:UDP无连接、不可靠,适合实时传输(如视频),通过端口号标识应用;TCP有连接、可靠,通过确认应答、序号、窗... 目录一、关于端口号1.1 端口号的理解1.2 端口号范围的划分1.3 认识知名端口号1.4 一个进程

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底

Linux权限管理与ACL访问控制详解

《Linux权限管理与ACL访问控制详解》Linux权限管理涵盖基本rwx权限(通过chmod设置)、特殊权限(SUID/SGID/StickyBit)及ACL精细授权,由umask决定默认权限,需合... 目录一、基本权限概述1. 基本权限与数字对应关系二、权限管理命令(chmod)1. 字符模式语法2.