数值分析——多项式插值之Lagrange插值

2023-11-20 16:10

本文主要是介绍数值分析——多项式插值之Lagrange插值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

  考虑这样一个实际例子,当我们按下计算器的正弦按钮时,会发生什么?我们都知道计算器有可以处理加法和乘法的硬件,但是,它是如何计算一个数的正弦值呢?多项式插值法就可以解决这样的问题。我们将在未来重新审视这个问题。目前,我们先来学什么是插值以及如何插值。

二、什么是插值

  如下图所示,假定我们收集了一组数据点$(x, y)$,譬如$(0, 1), (2, 2), (3, 4)$。有一条经过这三点的抛物线,我们把这条抛物线称为经过这3点的二次插值多项式

 

 

这样就引出了插值的数学定义,如下:

【插值的定义】  如果$P(x_i) = y_i (1 \leqslant i \leqslant n)$,那么函数$y = P(x)$插值了数据点

$(x_1, y_1), \cdot \cdot \cdot , (x_n, y_n)$

 简单来讲就是,如果一个函数通过了一组数据点,那么就称这个函数插值了这组数据点。

二、Lagrange插值

2.1 讨论

  现在我们知道了什么是插值,请大家考虑一个问题,如果我只知道一组n个数据点$(x_1, y_1), \cdot \cdot \cdot , (x_n, y_n)$,我们想要求出一个多项式,能够插值这一组所有的数据点。并且这个多项式的次数是$d = n - 1$次的,该怎么做?

  Lagrange插值公式给出了这个问题的解答方案。例如,假设给定点$(x_1, y_1), (x_2, y_2), (x_3, y_3)$,那么其2次插值多项式可以由Lagrange插值多项式给出,如下:

$P_2(x) = y_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$

   那么有人可能会问,这样的多项式一定是正确的吗,答案是:是的。我们可以验证一下:

1. 当$x = x1$时,$P_2(x1) = y1$;

2. 当$x = x2$时,$P_2(x2) = y2$;

3. 当$x = x3$时,$P_2(x3) = y3$;

   我们只考虑这三个点,因为我们只有这三个点,在这3个点上,这个多项式都成功的插值了,因此,这个多项式一定是正确的。(注意这个多项式关于变量$x$是2次的)

 

2.2 数学定义

一般地,假设给出$n$个点$(x_1, y_1), \cdot \cdot \cdot , (x_n, y_n)$,则对于1和n之间的每一个$k$可定义

$L_k(x) = \frac{(x - x_1) \cdot \cdot \cdot (x - x_{k -1})(x - x_{k + 1}) \cdot \cdot (x - x_n)}{(x_k - x_1) \cdot \cdot \cdot (x_k - x_{k -1})(x_k - x_{k + 1}) \cdot \cdot (x_k - x_n)}$

 $L_k$的一个有趣性质是:

1. $L_k(x_k) = 1$

2. $L_k(x_j) = 0 \qquad (j \neq k)$

  因此,定义$n - 1$次Lagrange多项式

$P_{n - 1}(x) = y_1 L_1(x) + \cdot \cdot \cdot + y_n L_n(x)$

2.3 存在性和及唯一性

  有人会问,对于给定的n个数据点,其插值多项式是唯一的吗?即只能是由一个多项式才能插值这n个点吗?答案是:不是

  大家想想就知道,对于二维平面的$n$个坐标点,我们肯定能画出无穷条线来穿过这些点,每一条线都对应这一个多项式。那么这个问题的意义何在?

  多项式是无穷的,但是,对于插值$n$个数据点的多项式,其最高次数是小于等于$n - 1$的,这样的多项式,只能是只有一个。用数学来描述这个问题如下:

【定理】

  设$(x_1, y_1), \cdot \cdot \cdot, (x_n, y_n)$是平面上$x_i$互不相同的$n$个点,那么存在一个而且仅存在一个次数小于等于$n - 1$次的多项式,满足

$P(x_i) = y_i,  \qquad i = 1,  \cdot \cdot \cdot, n$

【证明】

  (1) 存在性:存在性已由Lagrange插值的显式公式得出。

  (2) 唯一性:假定有存在两个这样公式,譬如$P(x)$及$Q(x)$,它们最多是$n - 1$次,而且都插值所有$n$个点,即有:

$P(x_1) = Q(x_1) = y_1, P(x_2) = Q(x_2) = y_2, \cdot \cdot \cdot, P(x_n) = Q(x_n) = y_n$。

  则有$H(x) = P(x) - Q(x)$,显然,$H$的次数最多也是$n - 1$,而且注意到

$H(x_1) = H(x_2) = \cdot \cdot \cdot = H(x_n)$

  即$H$有$n$个不同的零点。按照代数学基本定理,一个$d$次多项式,除了它恒等于零多项式,最多可能有$d$个零点。因此有

$H \equiv 0$

  于是,

$P(x) \equiv Q(x)$

因此,存在唯一的次数小于等于$n - 1$的多项式$P(x)$插值与$n$个点$(x_i, y_i)$。

 

2.4 范例

【题目】求插值于点$(0, 2), (1, 1), (2, 0), (3, -1)$的次数小于等于3的多项式。

【解】Lagrange形式如下:

$P(x) = 2 \frac{(x - 1)(x - 2)(x - 3)}{(0 - 1)(0 - 2)(0 - 3)} + 1 \frac{(x - 0)(x - 2)(x - 3)}{(1 - 0)(1 - 2)(1 - 3)} + 0 \frac{(x - 0)(x - 1)(x - 3)}{(2 - 0)(2 - 1)(2 - 3)} + (-1) \frac{(x - 0)(x - 1)(x - 2)}{(3 - 0)(3 - 1)(3 - 2)} = -x + 2$

转载于:https://www.cnblogs.com/Qling/p/9764941.html

这篇关于数值分析——多项式插值之Lagrange插值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395843

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原