【形式化方法】Part B: LA/LP Applications(子集和问题)

2023-11-20 16:10

本文主要是介绍【形式化方法】Part B: LA/LP Applications(子集和问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本节中,我们将研究如何利用LA/LP理论,借助Z3求解器建立模型和解决问题。

具体地说,我们将解决几个非常难的问题,这里的“难”是指这些问题都是np完全的,也就是说,对于这些问题一般没有已知的多项式算法。

但是,您很快就会发现使用LA/LP求解器(如Z3)解决这些问题是多么容易(和多么有趣)。一般来说,您将认识到基于求解器的问题解决策略的威力和简单性。

我们要解决的np完全问题是(其中一些已经在我们之前的讲座中讨论过):

  1. 子集和问题
  2. N-queen问题
  3. 背包问题
  4. 线性回归

请注意,这并不是基于SMT的求解器可以处理的问题的完整列表,在您学习了此技术之后,还鼓励您尝试解决其他np完全问题。

子集和问题

子集问题是一个著名的可满足性问题:给定一个多集(一个多集就像一个普通的集合,除了元素可以被重复之外),我们应该确定一个非空子集T (S),这样

 ,在集合中找到子集,使得这个子集的和为0比如这里有个集合:{-7,-3,-2,7000,5,9}。显然这里有个解:{-3,-2,5}

这个问题是np完全的,关于子集问题的更多背景信息,请参考这篇文章:子集和问题

解释: 我们要找到一个集合中的某个子集相加为0,只需要构造一个X = [x_0,x_1,...x_n]列表。比如在这个集合中{-7,-3,-2,7000,5,9},对应构造的列表是X  =[x_0,x_1,x_2,x_3,x_4,x_5]

需满足条件①x_0 + x_1 + x_2 + x_3 + x_4 + x_5 !=0  (因为如果全为0,条件②就永远成立)

                 ②(-7*x_0) + (-3*x_1) + (-2*x_2) + (7000*x_3) + (5*x_4) + (9*x_5) = 0 

能找到满足条件①②的结果就是:x_1 = 0,x_2 = 1,x_3 = 1,x_4 = 1,x_5 = 0,  这样,我们就知道索引为2,3,4对应的值,即[-3, -2, 5] 这个子集之和为0.问题解决。

Exercise 9:阅读subset_sum.py Python文件中的代码,完成subset_sum_la()方法,该方法使用0-1 ILA解决子集和问题。基本思想是为目标集合T中的每个数字创建标志F,我们只需要添加约束:其中N是目标集合S的长度(即实现上述问题的代码)

# LA-based solution
def subset_sum_la(target_set: list):solver = Solver()flags = [Int(f"x_{i}") for i in range(len(target_set))]# 0-1 ILAfor flag in flags:solver.add(Or(flag == 0, flag == 1))# print(flags)# the selected set must be non-emptysolver.add(sum(flags) != 0)# @exercise 9: please fill in the missing code to add# the following constraint into the solver.#       sum_i flags[i]*target_set[i] = 0# raise Todo("exercise 9: please fill in the missing code.")i = 0con = []for t in target_set:con.append(t * flags[i])i = i+1solver.add(sum(con) == 0)# print(con)if __name__ == '__main__':# a small test casesmall_set = [-7, -3, -2, 9000, 5, 8]print(subset_sum_la(small_set))

输出结果:  可满足,并且找到子集 [-3, -2, 5]

 

Exercise 10:subset_sum.py Python文件中的代码,subset_sum_dp()方法已经提供了基于动态编程(DP)的解决方案。并给出了另一种基于拉普拉斯算子的subset_sum_la_opt()方法,该方法利用Z3伪布尔约束条件进行优化。试着比较DP、LA算法和优化的LA算法的效率,通过将max_nums的值更改为其他值,例如200,2000,20000,…你的观察结果是什么?从这些数据中你能得出什么结论?

# LA 优化算法
def subset_sum_la_opt(target_set: list):solver = Solver()# enable Pseudo-Boolean solver# to get more information about Pseudo-Boolean constraints# refer to https://theory.stanford.edu/~nikolaj/programmingz3.htmlsolver.set("sat.pb.solver", "solver")# use Pseudo-Boolean constraints for each flagflags = [Bool(f"x_{i}") for i in range(len(target_set))]#solver.add(AtLeast(flags + [1]))# the selected set must be non-emptysolver.add(PbGe([(flags[i], 1) for i in range(len(target_set))], 1))# selected set must sum to zerosolver.add(PbEq([(flags[i], target_set[i]) for i in range(len(target_set))], 0))start = time.time()result = solver.check()print(f"time used in LA optimized: {(time.time() - start):.6f}s")if result == sat:return True, [target_set[index] for index, flag in enumerate(flags) if solver.model()[flag]]return False, result
# DP算法
def subset_sum_dp(target_set):def subset_sum_dp_do(the_set, target, index):if index == 0:return Falseif target == the_set[index - 1]:return Trueif subset_sum_dp_do(the_set, target, index - 1):return Truereturn subset_sum_dp_do(the_set, target - the_set[index - 1], index - 1)start = time.time()result = subset_sum_dp_do(target_set, 0, len(target_set))print(f"time used in DP: {(time.time() - start):.6f}s")return result
 
def gen_large_test(n):nums = [10000] * nnums[len(nums) - 2] = 1nums[len(nums) - 1] = -1# print(nums)return numsif __name__ == '__main__':# a large test casemax_nums = 20large_set = gen_large_test(max_nums)"""# @exercise 10: compare the efficiency of the DP and theLP algorithm, by changing the value of "max_nums" to othervalues, say, 200, 2000, 20000, 200000, ...what's your observation? What conclusion you can draw from these data?raise Todo("exercise 10: please fill in the missing code.")""""""max_num = 20time used in LA: 0.070020stime used in LA optimized: 0.020002stime used in DP: 0.667767sLA优化算法比LA算法速度快,DP算法速度最慢,到max_num = 200时,DP算法用时更长了。"""print(subset_sum_la(large_set))print(subset_sum_la_opt(large_set))print(subset_sum_dp(large_set))
运行结果:
结论:max_num = 20
time used in LA: 0.070020s
time used in LA optimized: 0.020002s
time used in DP: 0.667767s
LA优化算法比LA算法速度快,DP算法速度最慢,到max_num = 200时,DP算法用时更长了(没有运行下去)。

 

#中科大软院-hbj形式化课程笔记-欢迎留言与私信交流

#随手点赞,我会更开心~~^_^

 

这篇关于【形式化方法】Part B: LA/LP Applications(子集和问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395838

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶