【形式化方法】Part B: LA/LP Applications(子集和问题)

2023-11-20 16:10

本文主要是介绍【形式化方法】Part B: LA/LP Applications(子集和问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本节中,我们将研究如何利用LA/LP理论,借助Z3求解器建立模型和解决问题。

具体地说,我们将解决几个非常难的问题,这里的“难”是指这些问题都是np完全的,也就是说,对于这些问题一般没有已知的多项式算法。

但是,您很快就会发现使用LA/LP求解器(如Z3)解决这些问题是多么容易(和多么有趣)。一般来说,您将认识到基于求解器的问题解决策略的威力和简单性。

我们要解决的np完全问题是(其中一些已经在我们之前的讲座中讨论过):

  1. 子集和问题
  2. N-queen问题
  3. 背包问题
  4. 线性回归

请注意,这并不是基于SMT的求解器可以处理的问题的完整列表,在您学习了此技术之后,还鼓励您尝试解决其他np完全问题。

子集和问题

子集问题是一个著名的可满足性问题:给定一个多集(一个多集就像一个普通的集合,除了元素可以被重复之外),我们应该确定一个非空子集T (S),这样

 ,在集合中找到子集,使得这个子集的和为0比如这里有个集合:{-7,-3,-2,7000,5,9}。显然这里有个解:{-3,-2,5}

这个问题是np完全的,关于子集问题的更多背景信息,请参考这篇文章:子集和问题

解释: 我们要找到一个集合中的某个子集相加为0,只需要构造一个X = [x_0,x_1,...x_n]列表。比如在这个集合中{-7,-3,-2,7000,5,9},对应构造的列表是X  =[x_0,x_1,x_2,x_3,x_4,x_5]

需满足条件①x_0 + x_1 + x_2 + x_3 + x_4 + x_5 !=0  (因为如果全为0,条件②就永远成立)

                 ②(-7*x_0) + (-3*x_1) + (-2*x_2) + (7000*x_3) + (5*x_4) + (9*x_5) = 0 

能找到满足条件①②的结果就是:x_1 = 0,x_2 = 1,x_3 = 1,x_4 = 1,x_5 = 0,  这样,我们就知道索引为2,3,4对应的值,即[-3, -2, 5] 这个子集之和为0.问题解决。

Exercise 9:阅读subset_sum.py Python文件中的代码,完成subset_sum_la()方法,该方法使用0-1 ILA解决子集和问题。基本思想是为目标集合T中的每个数字创建标志F,我们只需要添加约束:其中N是目标集合S的长度(即实现上述问题的代码)

# LA-based solution
def subset_sum_la(target_set: list):solver = Solver()flags = [Int(f"x_{i}") for i in range(len(target_set))]# 0-1 ILAfor flag in flags:solver.add(Or(flag == 0, flag == 1))# print(flags)# the selected set must be non-emptysolver.add(sum(flags) != 0)# @exercise 9: please fill in the missing code to add# the following constraint into the solver.#       sum_i flags[i]*target_set[i] = 0# raise Todo("exercise 9: please fill in the missing code.")i = 0con = []for t in target_set:con.append(t * flags[i])i = i+1solver.add(sum(con) == 0)# print(con)if __name__ == '__main__':# a small test casesmall_set = [-7, -3, -2, 9000, 5, 8]print(subset_sum_la(small_set))

输出结果:  可满足,并且找到子集 [-3, -2, 5]

 

Exercise 10:subset_sum.py Python文件中的代码,subset_sum_dp()方法已经提供了基于动态编程(DP)的解决方案。并给出了另一种基于拉普拉斯算子的subset_sum_la_opt()方法,该方法利用Z3伪布尔约束条件进行优化。试着比较DP、LA算法和优化的LA算法的效率,通过将max_nums的值更改为其他值,例如200,2000,20000,…你的观察结果是什么?从这些数据中你能得出什么结论?

# LA 优化算法
def subset_sum_la_opt(target_set: list):solver = Solver()# enable Pseudo-Boolean solver# to get more information about Pseudo-Boolean constraints# refer to https://theory.stanford.edu/~nikolaj/programmingz3.htmlsolver.set("sat.pb.solver", "solver")# use Pseudo-Boolean constraints for each flagflags = [Bool(f"x_{i}") for i in range(len(target_set))]#solver.add(AtLeast(flags + [1]))# the selected set must be non-emptysolver.add(PbGe([(flags[i], 1) for i in range(len(target_set))], 1))# selected set must sum to zerosolver.add(PbEq([(flags[i], target_set[i]) for i in range(len(target_set))], 0))start = time.time()result = solver.check()print(f"time used in LA optimized: {(time.time() - start):.6f}s")if result == sat:return True, [target_set[index] for index, flag in enumerate(flags) if solver.model()[flag]]return False, result
# DP算法
def subset_sum_dp(target_set):def subset_sum_dp_do(the_set, target, index):if index == 0:return Falseif target == the_set[index - 1]:return Trueif subset_sum_dp_do(the_set, target, index - 1):return Truereturn subset_sum_dp_do(the_set, target - the_set[index - 1], index - 1)start = time.time()result = subset_sum_dp_do(target_set, 0, len(target_set))print(f"time used in DP: {(time.time() - start):.6f}s")return result
 
def gen_large_test(n):nums = [10000] * nnums[len(nums) - 2] = 1nums[len(nums) - 1] = -1# print(nums)return numsif __name__ == '__main__':# a large test casemax_nums = 20large_set = gen_large_test(max_nums)"""# @exercise 10: compare the efficiency of the DP and theLP algorithm, by changing the value of "max_nums" to othervalues, say, 200, 2000, 20000, 200000, ...what's your observation? What conclusion you can draw from these data?raise Todo("exercise 10: please fill in the missing code.")""""""max_num = 20time used in LA: 0.070020stime used in LA optimized: 0.020002stime used in DP: 0.667767sLA优化算法比LA算法速度快,DP算法速度最慢,到max_num = 200时,DP算法用时更长了。"""print(subset_sum_la(large_set))print(subset_sum_la_opt(large_set))print(subset_sum_dp(large_set))
运行结果:
结论:max_num = 20
time used in LA: 0.070020s
time used in LA optimized: 0.020002s
time used in DP: 0.667767s
LA优化算法比LA算法速度快,DP算法速度最慢,到max_num = 200时,DP算法用时更长了(没有运行下去)。

 

#中科大软院-hbj形式化课程笔记-欢迎留言与私信交流

#随手点赞,我会更开心~~^_^

 

这篇关于【形式化方法】Part B: LA/LP Applications(子集和问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395838

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装