【形式化方法】PartB:LA/LP Applications(N皇后问题)

2023-11-20 16:10

本文主要是介绍【形式化方法】PartB:LA/LP Applications(N皇后问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

N-Queen Problem:

在作业3(挑战问题)中,我们在SAT之前解决了N个皇后的问题(4个皇后)。这个问题是关于把N个皇后放在一个N*N的棋盘上,这样就没有两个皇后互相威胁了。一种解决方案要求没有两个皇后共享同一行、列、对角线或反对角线。下图显示了N = 4的样本N -皇后谜题的解:

这个问题的目标是在一个N*N棋盘,找出存在多少个解。

SAT实现的基本思想是通过Bool值构造n-queen谜题约束。实际上,我们可以用LA来求解n-queen问题,它比SAT更容易理解,也更高效。其思路与求解子集和问题的思路相同。我们使用一个二维的0-1标志F来代表棋盘的每个单元格,F有值:

 满足 0 < i <N, 0< j < N 。我们可以建立n-queen谜题的约束条件如下:

  • 每一行只有一个皇后:   0 < i <N 
  • 每一列只有一个皇后:0 < j < N
  • 每条对角线最多有1个皇后:-N < d < N
  • 每条反对角线最多有1个皇后:  0 < d < 2N -1

Exercise 11: 阅读queen.py Python文件中的代码,完成n_queen_la()方法,该方法使用0-1 ILA解决n-queen问题。您可以通过参考我们上面讨论的模型来构造约束,或者您可以提出您自己的约束。

 

# LA算法解决N皇后问题
def n_queen_la(board_size: int, verbose: bool = False) -> int:solver = Solver()n = board_size# Each position of the board is represented by a 0-1 integer variable:#   ...    ...    ...    ...#   x_2_0  x_2_1  x_2_2  ...#   x_1_0  x_1_1  x_1_2  ...#   x_0_0  x_0_1  x_0_2  ...#board = [[Int(f"x_{row}_{col}") for col in range(n)] for row in range(n)]# only be 0 or 1 in boardfor row in board:for pos in row:solver.add(Or(pos == 0, pos == 1))# print(row)# @exercise 11: please fill in the missing code to add# the following constraint into the solver:#   each row has just 1 queen,#   each column has just 1 queen,#   each diagonal has at most 1 queen,#   each anti-diagonal has at most 1 queen.# raise Todo("exercise 11: please fill in the missing code.")for row in board:# print(row)solver.add(sum(row) == 1) # 约束1:一行只有一个皇后for col in board:# print(col)solver.add(sum(col) == 1) # 约束2: 一列只有一个皇后i = 0dia = []anti_dia = []# 对角线元素放到dia数组里面for row in board:j = 0for pos in row:if i == j:dia.append(pos)j = j + 1i = i + 1solver.add(sum(dia) <= 1)    # 约束3:对角线最多只有一个皇后# print(dia)# 反对角线元素放到anti_dia数组里面i = 0for row in board:j = 0for pos in row:if i + j == n-1 :anti_dia.append(pos)j = j + 1i = i + 1# print(anti_dia)solver.add(sum(anti_dia) <= 1)  # 约束4:反对角线最多只有一个皇后# count the number of solutionssolution_count = 0start = time.time()while solver.check() == sat:solution_count += 1model = solver.model()if verbose:# print the solutionprint([(row_index, col_index) for row_index, row in enumerate(board)for col_index, flag in enumerate(row) if model[flag] == 1])# generate constraints from solutionsolution_cons = [(flag == 1) for row in board for flag in row if model[flag] == 1]# add solution to the solver to get new solutionsolver.add(Not(And(solution_cons)))print(f"n_queen_la solve {board_size}-queens by {(time.time() - start):.6f}s")return solution_count

另一种解决N -queen问题的方法是使用回溯算法,但复杂度相对于棋盘大小N是指数级的。

Exercise 12:queen.py Python文件中的代码,在n_queen_bt()方法中有一个基于回溯的解决方案。尝试比较回溯算法和LA算法,通过改变棋盘大小N的值为其他值,哪一个更快?从结果中你能得出什么结论?

#回溯法解决N皇后问题
def n_queen_bt(board_size: int, verbose: bool = False) -> int:n = board_sizesolutions = [[]]def is_safe(col, solution):same_col = col in solutionsame_diag = any(abs(col - j) == (len(solution) - i) for i, j in enumerate(solution))return not (same_col or same_diag)start = time.time()for row in range(n):solutions = [solution + [col] for solution in solutions for col in range(n) if is_safe(col, solution)]print(f"n_queen_bt solve {board_size}-queens by {(time.time() - start):.6f}s")if verbose:# print the solutionsfor solution in solutions:print(list(enumerate(solution)))return len(solutions)

 

上述LA实现并不是求解n-queen问题的唯一算法。事实上,我们建立约束来描述问题的方式往往对算法的效率有很大的影响。

Exercise 13: 阅读queen.py Python文件中n_queen_la_opt()方法的代码。试着将此方法的效率与练习11中的实现进行比较。你的观察是什么?你能得出什么结论?

# LA优化算法解决N皇后问题
def n_queen_la_opt(board_size: int, verbose: bool = False) -> int:solver = Solver()n = board_size# We know each queen must be in a different row.# So, we represent each queen by a single integer: the column position# the q_i = j means queen in the row i and column j.queens = [Int(f"q_{i}") for i in range(n)]# each queen is in a column {0, ... 7 }solver.add([And(0 <= queens[i], queens[i] < n) for i in range(n)])# one queen per columnsolver.add([Distinct(queens)])# at most one for per anti-diagonal & diagonalsolver.add([If(i == j, True, And(queens[i] - queens[j] != i - j, queens[i] - queens[j] != j - i))for i in range(n) for j in range(i)])# count the number of solutionssolution_count = 0start = time.time()while solver.check() == sat:solution_count += 1model = solver.model()if verbose:# print the solutionsprint([(index, model[queen]) for index, queen in enumerate(queens)])# generate constraints from solutionsolution_cons = [(queen == model[queen]) for queen in queens]# add solution to the solver to get new solutionsolver.add(Not(And(solution_cons)))print(f"n_queen_la_opt solve {board_size}-queens by {(time.time() - start):.6f}s")return solution_count

 N = 4时,比较运行时间:

N = 5 时,比较运行时间:

结论:

三种算法解决N皇后问题效率的比较: 用回溯法最快、LA优化算法其次、LA算法最慢

 

#中科大软院-hbj形式化课程笔记-欢迎留言与私信交流

#随手点赞,我会更开心~~^_^

 

 

这篇关于【形式化方法】PartB:LA/LP Applications(N皇后问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395837

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分