rasa train nlu详解:1.2-_train_graph()函数

2023-11-12 01:36

本文主要是介绍rasa train nlu详解:1.2-_train_graph()函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文使用《使用ResponseSelector实现校园招聘FAQ机器人》中的例子,主要详解介绍_train_graph()函数中变量的具体值。

一.rasa/model_training.py/_train_graph()函数
  _train_graph()函数实现,如下所示:

def _train_graph(file_importer: TrainingDataImporter,training_type: TrainingType,output_path: Text,fixed_model_name: Text,model_to_finetune: Optional[Union[Text, Path]] = None,force_full_training: bool = False,dry_run: bool = False,**kwargs: Any,
) -> TrainingResult:if model_to_finetune:  # 如果有模型微调model_to_finetune = rasa.model.get_model_for_finetuning(model_to_finetune)  # 获取模型微调if not model_to_finetune:  # 如果没有模型微调rasa.shared.utils.cli.print_error_and_exit(  # 打印错误并退出f"No model for finetuning found. Please make sure to either "   # 没有找到微调模型。请确保f"specify a path to a previous model or to have a finetunable " # 要么指定一个以前模型的路径,要么有一个可微调的f"model within the directory '{output_path}'."                  # 在目录'{output_path}'中的模型。)rasa.shared.utils.common.mark_as_experimental_feature(  # 标记为实验性功能"Incremental Training feature"  # 增量训练功能)is_finetuning = model_to_finetune is not None  # 如果有模型微调config = file_importer.get_config()  # 获取配置recipe = Recipe.recipe_for_name(config.get("recipe"))  # 获取配方config, _missing_keys, _configured_keys = recipe.auto_configure(  # 自动配置file_importer.get_config_file_for_auto_config(),  # 获取自动配置的配置文件config,  # 配置training_type,  # 训练类型)model_configuration = recipe.graph_config_for_recipe(  # 配方的graph配置config,  # 配置kwargs,  # 关键字参数training_type=training_type,  # 训练类型is_finetuning=is_finetuning,  # 是否微调)rasa.engine.validation.validate(model_configuration)  # 验证tempdir_name = rasa.utils.common.get_temp_dir_name()  # 获取临时目录名称# Use `TempDirectoryPath` instead of `tempfile.TemporaryDirectory` as this leads to errors on Windows when the context manager tries to delete an already deleted temporary directory (e.g. https://bugs.python.org/issue29982)# 翻译:使用TempDirectoryPath而不是tempfile.TemporaryDirectory,因为当上下文管理器尝试删除已删除的临时目录时,这会导致Windows上的错误(例如https://bugs.python.org/issue29982)with rasa.utils.common.TempDirectoryPath(tempdir_name) as temp_model_dir:  # 临时模型目录model_storage = _create_model_storage(  # 创建模型存储is_finetuning, model_to_finetune, Path(temp_model_dir)  # 是否微调,模型微调,临时模型目录)cache = LocalTrainingCache()  # 本地训练缓存trainer = GraphTrainer(model_storage, cache, DaskGraphRunner)  # Graph训练器if dry_run:  # dry运行fingerprint_status = trainer.fingerprint(                        # fingerprint状态model_configuration.train_schema, file_importer              # 模型配置的训练模式,文件导入器)return _dry_run_result(fingerprint_status, force_full_training)  # 返回dry运行结果model_name = _determine_model_name(fixed_model_name, training_type)  # 确定模型名称full_model_path = Path(output_path, model_name)                # 完整的模型路径with telemetry.track_model_training(                    # 跟踪模型训练file_importer, model_type=training_type.model_type  # 文件导入器,模型类型):trainer.train(                               # 训练model_configuration,                     # 模型配置file_importer,                           # 文件导入器full_model_path,                         # 完整的模型路径force_retraining=force_full_training,    # 强制重新训练is_finetuning=is_finetuning,             # 是否微调)rasa.shared.utils.cli.print_success(         # 打印成功f"Your Rasa model is trained and saved at '{full_model_path}'."  # Rasa模型已经训练并保存在'{full_model_path}'。)return TrainingResult(str(full_model_path), 0)   # 训练结果

1.传递来的形参数据

2._train_graph()函数组成
  该函数主要由3个方法组成,如下所示:

  • model_configuration = recipe.graph_config_for_recipe(*)
  • trainer = GraphTrainer(model_storage, cache, DaskGraphRunner)
  • trainer.train(model_configuration, file_importer, full_model_path, force_retraining, is_finetuning)

二._train_graph()函数中的方法
1.file_importer.get_config()
  将config.yml文件转化为dict类型,如下所示:

2.Recipe.recipe_for_name(config.get(“recipe”))

(1)ENTITY_EXTRACTOR = ComponentType.ENTITY_EXTRACTOR
实体抽取器。
(2)INTENT_CLASSIFIER = ComponentType.INTENT_CLASSIFIER
意图分类器。
(3)MESSAGE_FEATURIZER = ComponentType.MESSAGE_FEATURIZER
消息特征化。
(4)MESSAGE_TOKENIZER = ComponentType.MESSAGE_TOKENIZER
消息Tokenizer。
(5)MODEL_LOADER = ComponentType.MODEL_LOADER
模型加载器。
(6)POLICY_WITHOUT_END_TO_END_SUPPORT = ComponentType.POLICY_WITHOUT_END_TO_END_SUPPORT
非端到端策略支持。
(7)POLICY_WITH_END_TO_END_SUPPORT = ComponentType.POLICY_WITH_END_TO_END_SUPPORT
端到端策略支持。

3.model_configuration = recipe.graph_config_for_recipe(*)
  model_configuration.train_schema和model_configuration.predict_schema的数据类型都是GraphSchema类对象,分别表示在训练和预测时所需要的SchemaNode,以及SchemaNode在GraphSchema中的依赖关系。

(1)model_configuration.train_schema

  • schema_validator:rasa.graph_components.validators.default_recipe_validator.DefaultV1RecipeValidator类中的validate方法
  • finetuning_validator:rasa.graph_components.validators.finetuning_validator.FinetuningValidator类中的validate方法
  • nlu_training_data_provider:rasa.graph_components.providers.nlu_training_data_provider.NLUTrainingDataProvider类中的provide方法
  • train_JiebaTokenizer0:rasa.nlu.tokenizers.jieba_tokenizer.JiebaTokenizer类中的train方法
  • run_JiebaTokenizer0:rasa.nlu.tokenizers.jieba_tokenizer.JiebaTokenizer类中的process_training_data方法
  • run_LanguageModelFeaturizer1:rasa.nlu.featurizers.dense_featurizer.lm_featurizer.LanguageModelFeaturizer类中的process_training_data方法
  • train_DIETClassifier2:rasa.nlu.classifiers.diet_classifier.DIETClassifier类中的train方法
  • train_ResponseSelector3:rasa.nlu.selectors.response_selector.ResponseSelector类中的train方法

说明:ResponseSelector类继承自DIETClassifier类。

(2)model_configuration.predict_schema

  • nlu_message_converter:rasa.graph_components.converters.nlu_message_converter.NLUMessageConverter类中的convert_user_message方法
  • run_JiebaTokenizer0:rasa.nlu.tokenizers.jieba_tokenizer.JiebaTokenizer类中的process方法
  • run_LanguageModelFeaturizer1:rasa.nlu.featurizers.dense_featurizer.lm_featurizer.LanguageModelFeaturizer类中的process方法
  • run_DIETClassifier2:rasa.nlu.classifiers.diet_classifier.DIETClassifier类中的process方法
  • run_ResponseSelector3:rasa.nlu.selectors.response_selector.ResponseSelector类中的process方法
  • run_RegexMessageHandler:rasa.nlu.classifiers.regex_message_handler.RegexMessageHandler类中的process方法

4.tempdir_name
  ‘C:\Users\ADMINI~1\AppData\Local\Temp\tmpg0v179ea’

5.trainer = GraphTrainer(*)和trainer.train(*)
  这里执行的代码是rasa/engine/training/graph_trainer.py中GraphTrainer类的train()方法,实现功能为训练和打包模型并返回预测graph运行程序。

6.Rasa中GraphComponent的子类


参考文献:
[1]https://github.com/RasaHQ/rasa
[2]rasa 3.2.10 NLU模块的训练:https://zhuanlan.zhihu.com/p/574935615
[3]rasa.engine.graph:https://rasa.com/docs/rasa/next/reference/rasa/engine/graph/

这篇关于rasa train nlu详解:1.2-_train_graph()函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394195

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

JAVA transient 关键字作用详解

《JAVAtransient关键字作用详解》Java的transient关键字用于修饰成员变量,使其不参与序列化过程,通过自定义序列化方法,可以手动控制transient变量的序列化行为,本文给大... 目录一、transient关键字作用二、原理详解三、典型使用场景四、代码示例五、注意事项六、与 stat