iodelay 使用总结

2023-11-12 01:11
文章标签 总结 使用 iodelay

本文主要是介绍iodelay 使用总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1        ku040 的 每个delay单元(1 tap)大概在2.5ps-15ps之间,共有512级delay,ku040后仿真中每级延时 4.7ps左右,实测下来每级4.4ps

2        纯内部逻辑延时要用 idelay,不能用odelay

3        参考时钟ref_clk要求200-2667M,100M有时会报错,有时会警告⚠,但是只要生成bit留就可以正常使用

4        fixed 时推荐用 TIME模式, load/varible 时推荐用 count 模式,

        time模式一定要使用 idelayctrl 元件,等 idelayctrl 的 rdy 拉高时显示的value_out值即为设定的delay时间,count模式可以不用 idelayctrl 元件

         idelayctrl 的 rdy 管脚不可作为 idelaye3 的 ~rst来使用,否则会导致calculate 无法完成,rdy管脚一直无法拉高,在 calculate时, idelayctrl 和 idelaye3 都不能 rst

       TIME模式下只有 en_vtc = 1时 indeye3 可以 rdy  odelaye3 不受此限制

        load/varible 模式下如果想配置准确的 延时时间,

        方式一 : 需要将其中一个delaye3 配置为TIME & FIXED 模式,然后在rdy & en_vtc 后读出 value_out 值,此时idelaye3每级 tap 延时 = 设定延时值/(value_out - 54), odelaye3每级tap延时 = 设定延时值/value_out ,然后在其他的 delaye3 中load 对应级数。

        其中 54 是rx/idelaye3 特有的 align_dly ,即延时值设置为0时value_out的值(不是定值,50-60之间,平均为54,即 data和clk 到达 tx_rx_bitslice 的时间差,

          参考:      Xilinx Customer Community

        方式二: 如果外部有方法可以测出 load 后延时变化的值,则可以直接用 y = kx + b 的方式,分别测出1级和500级的延时,相减,可得到 每级的延时 x 和 初始误差 b 的值

5         使用cascade模式要按照如下方案ug571  p176

级数没有限制,1,2,3.  4,,,,,n 级  级联都可以,每个单端pin都有 1个 idly + 1个odly

  级联只能device 界面中 向下,不能超过bank 的边界或中点

wire wire10,wire11,wire12,wire13;IDELAYE3 #(.CASCADE("MASTER"),          // Cascade setting (MASTER, NONE, SLAVE_END, SLAVE_MIDDLE).DELAY_FORMAT("COUNT"),     // Units of the DELAY_VALUE (COUNT, TIME).DELAY_SRC("DATAIN"),     // Delay input (DATAIN, IDATAIN).DELAY_TYPE("VAR_LOAD"),      // Set the type of tap delay line (FIXED, VARIABLE, VAR_LOAD).DELAY_VALUE('d1),           // Input delay value setting.IS_CLK_INVERTED(1'b0),    // Optional inversion for CLK.IS_RST_INVERTED(1'b0),    // Optional inversion for RST.REFCLK_FREQUENCY(200.0),  // IDELAYCTRL clock input frequency in MHz (200.0-2667.0).SIM_DEVICE("ULTRASCALE"), // Set the device version (ULTRASCALE).UPDATE_MODE("ASYNC")      // Determines when updates to the delay will take effect (ASYNC, MANUAL, SYNC)
)
IDELAYE3_sys_inst10 (.CASC_IN(),         // 1-bit input: Cascade delay input from slave ODELAY CASCADE_OUT   .CASC_RETURN(wire13), // 1-bit input: Cascade delay returning from slave ODELAY DATAOUT.CASC_OUT(wire10),       // 1-bit output: Cascade delay output to ODELAY input cascade.CE(1'b0),                   // 1-bit input: Active high enable increment/decrement input.CLK(clk_in0),                 // 1-bit input: Clock input.EN_VTC(1'b0),           // 1-bit input: Keep delay constant over VT.INC(1'b0),                 // 1-bit input: Increment / Decrement tap delay input.CNTVALUEIN(i_sysclk_iodly_set[26:18]),   // 9-bit input: Counter value input  .CNTVALUEOUT(o_sysclk_iodly_value[26:18]), // 9-bit output: Counter value output          .LOAD(i_rate_load_en[2]),               // 1-bit input: Load DELAY_VALUE input.IDATAIN(),         // 1-bit input: Data input from the IOBUF      .DATAIN(t_edge_n[1]),           // 1-bit input: Data input from the logic      .DATAOUT(t_edge1_n_iodly),         // 1-bit output: Delayed data output     .RST(rst)                  // 1-bit input: Asynchronous Reset to the DELAY_VALUE
);ODELAYE3 #(.CASCADE("SLAVE_MIDDLE"),               // Cascade setting (MASTER, NONE, SLAVE_END, SLAVE_MIDDLE).DELAY_FORMAT("COUNT"),          // (COUNT, TIME).DELAY_TYPE("VAR_LOAD"),           // Set the type of tap delay line (FIXED, VARIABLE, VAR_LOAD).DELAY_VALUE('d100),                // Output delay tap setting.IS_CLK_INVERTED(1'b0),         // Optional inversion for CLK.IS_RST_INVERTED(1'b0),         // Optional inversion for RST.REFCLK_FREQUENCY(200.0),       // IDELAYCTRL clock input frequency in MHz (200.0-2667.0)..SIM_DEVICE("ULTRASCALE"), // Set the device version (ULTRASCALE, ULTRASCALE_PLUS,// ULTRASCALE_PLUS_ES1, ULTRASCALE_PLUS_ES2).UPDATE_MODE("ASYNC")           // Determines when updates to the delay will take effect (ASYNC, MANUAL,// SYNC))ODELAYE3_inst10 (.CASC_OUT(wire11),       // 1-bit output: Cascade delay output to IDELAY input cascade.CASC_IN(wire10),         // 1-bit input: Cascade delay input from slave IDELAY CASCADE_OUT.CASC_RETURN(wire12), // 1-bit input: Cascade delay returning from slave IDELAY DATAOUT.CE(1'b0),                   // 1-bit input: Active high enable increment/decrement input.CLK(clk_in0),                 // 1-bit input: Clock input   .EN_VTC(1'b0),           // 1-bit input: Keep delay constant over VT.INC(1'b0),                 // 1-bit input: Increment/Decrement tap delay input.LOAD(i_rate_load_en[2]),               // 1-bit input: Load DELAY_VALUE input.CNTVALUEIN(i_sysclk_iodly_set[26:18]),   // 9-bit input: Counter value input.CNTVALUEOUT(), // 9-bit output: Counter value output         .ODATAIN(),         // 1-bit input: Data input.DATAOUT(wire13),         // 1-bit output: Delayed data from ODATAIN input port      .RST(rst)                  // 1-bit input: Asynchronous Reset to the DELAY_VALUE);   IDELAYE3 #(.CASCADE("SLAVE_END"),          // Cascade setting (MASTER, NONE, SLAVE_END, SLAVE_MIDDLE).DELAY_FORMAT("COUNT"),     // Units of the DELAY_VALUE (COUNT, TIME).DELAY_SRC("DATAIN"),     // Delay input (DATAIN, IDATAIN).DELAY_TYPE("VAR_LOAD"),      // Set the type of tap delay line (FIXED, VARIABLE, VAR_LOAD).DELAY_VALUE('d100),           // Input delay value setting.IS_CLK_INVERTED(1'b0),    // Optional inversion for CLK.IS_RST_INVERTED(1'b0),    // Optional inversion for RST.REFCLK_FREQUENCY(200.0),  // IDELAYCTRL clock input frequency in MHz (200.0-2667.0).SIM_DEVICE("ULTRASCALE"), // Set the device version (ULTRASCALE).UPDATE_MODE("ASYNC")      // Determines when updates to the delay will take effect (ASYNC, MANUAL, SYNC)
)
IDELAYE3_sys_inst11 (.CASC_IN(wire11),         // 1-bit input: Cascade delay input from slave ODELAY CASCADE_OUT   .CASC_RETURN(), // 1-bit input: Cascade delay returning from slave ODELAY DATAOUT.CASC_OUT(),       // 1-bit output: Cascade delay output to ODELAY input cascade.CE(1'b0),                   // 1-bit input: Active high enable increment/decrement input.CLK(clk_in0),                 // 1-bit input: Clock input.EN_VTC(1'b0),           // 1-bit input: Keep delay constant over VT.INC(1'b0),                 // 1-bit input: Increment / Decrement tap delay input.CNTVALUEIN(i_sysclk_iodly_set[26:18]),   // 9-bit input: Counter value input  .CNTVALUEOUT(), // 9-bit output: Counter value output          .LOAD(i_rate_load_en[2]),               // 1-bit input: Load DELAY_VALUE input.IDATAIN(),         // 1-bit input: Data input from the IOBUF      .DATAIN(),           // 1-bit input: Data input from the logic      .DATAOUT(wire12),         // 1-bit output: Delayed data output     .RST(rst)                  // 1-bit input: Asynchronous Reset to the DELAY_VALUE
);

6 每一个管脚都对应一个 BITSLICE_RX_TX ,在输入时,进入的信号会先进入对应的 BITSLICE_RX_TX ,(如果是差分 则会进入p管脚对应的BITSLICE_RX_TX),此BITSLICE_RX_TX 被占用,

如果要加 indly/oupdly 单元,如果入口是 IDATAIN(Data input from the IOBUF)则会将 indly

例化在当前被占用的 bitslice_rx_tx, 如果入口是 DATAIN(Data input from the logic),则穿过当前 BITSLICE_RX_TX 出来后进入其他的 BITSLICE_RX_TX(被例化成了indly),如下图

 同理,输出时,若是最终输出 不是 outdly,则输出走线也要穿过对应的 bitslice_rx_tx,从而造成占用

可以用 set_property LOC BITSLICE_RX_TX_X0Y191  [get_cells {trig_cdc_inst/pin_gen[0].IDELAYE3_cmph} ]   的方式强制约束到对应位置,已经占用的除外

       

7 idelay 不能延迟clk,要精确延迟 clk 只能使用 mmcm或者pll 的 fine phase 功能 

8  如果updata_mode 选了sync,则 新load 的 delay 会在 data数据 通过一个脉冲后再生效(如下图),

 如果选 async, 则会在 上升沿 固定的时间(5-9ns左右)后生效

9  如果有级联,每一级的 iodlye3 延时值为 X,则 发送一个边缘 后 间隔 X之内不能再发边缘,否则会有异常latch, 导致 延时后的波形与 延时前不一致,并且异常的时间不可预测

10  在配置生效的 clk上升沿时,如果延时链的 set 值经过路径延时,刚好在此位置附近到达,会导致此次边缘延时不确定

11 注意,配置的 load 一定要在 clk 对应的时钟域 内,否则 load 结束时可能会引起亚稳态

这篇关于iodelay 使用总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394078

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用