实践篇(5):基于REfO的简单知识问答

2023-11-12 00:20
文章标签 简单 实践 问答 知识 refo

本文主要是介绍实践篇(5):基于REfO的简单知识问答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

image

本文主要参考SimmerChan大神文章:https://zhuanlan.zhihu.com/p/33224431
Pelhans 大神的博客:http://pelhans.com/2018/09/03/kg_from_0_note3/

1 简介

基于浙江大学在openKG上提供的 基于REfO的KBQA实现及示例。代码部分浙大方面已经完成绝大部分,这里主要将其应用到自己的知识图谱上。在运行KBQA代码前,应按照前面的教程将电影类知识图谱导入到Jena的TDB数据库中,并运行fuseki服务器,这样我们才能进行访问查询。

1.1代码结构

 jena_sparql_endpoint.pyquery_main.pyquestion2sparql.pyquestion_temp.pyword_tagging.pyexternal_dict/csv2txt.pymovie_title.csvmovie_title.txtperson_name.csvperson_name.txt__init__.py
  • "KB_query"文件夹包含的是完成整个问答demo流程所需要的脚本。
  • "external_dict"包含的是人名和电影名两个外部词典。csv文件是从mysql-workbench导出的,按照jieba外部词典的格式,我们将csv转为对应的txt。
  • “word_tagging”,定义Word类的结构(即我们在REfO中使用的对象);定义"Tagger"类来初始化词典,并实现自然语言到Word对象的方法。
  • “jena_sparql_endpoint”,用于完成与Fuseki的交互。
  • “question2sparql”,将自然语言转为对应的SPARQL查询。
  • “question_temp”,定义SPARQL模板和匹配规则。
  • “query_main”,main函数。

在运行"query_main"之前,读者需要启动Fuseki服务,具体方法请参考上一篇文章。

1.2 展示:

2具体实现

基于REfO的简单知识问答的原理很简单,就是通过REfo提供的匹配能力,在输入的自然语言问题中进行匹配查找。如果找到我们预先设定的词或词性组合,那么就认为该问题与这个词或词性组合匹配。而一个词或词性的组合又对应着一个SPARQL查询模板,这样我们就借助REfO完成了自然语言到查询模板的转换。得到查询模板后,我们就利用Jena fuseki 服务器提供的端口进行查询得到返回的结果。

2.1 模块一 word_tagging部分

该部分利用jieba分词对中文句子进行分词和词性标注。将词的文本和词性进行打包,视为词对象,对应 :class:Word(token, pos)。

class Word(object):    def __init__(self, token, pos):self.token = tokenself.pos = pos class Tagger:          def __init__(self, dict_paths):# TODO 加载外部词典for p in dict_paths:jieba.load_userdict(p)def get_word_objects(self, sentence):""" Get :class:WOrd(token, pos) """            return [Word(word.encode('utf-8'), tag) for word, tag in pseg.cut(sentence)]

2.2 模块二 rules 部分

该部分为程序核心,负责将自然语言转换为SPARQL模板。

下面为rules的程序入口,customize_rules 函数:

def customize_rules():# some rules for matching# TODO: customize your own rules hereperson = (W(pos="nr") | W(pos="x") | W(pos="nrt"))movie = (W(pos="nz"))place = (W("出生地") | W("出生"))intro = (W("简介") | W(pos="介绍"))rules = [      Rule(condition=W(pos="r") + W("是") + person | \ person + W("是") + W(pos="r"),action=who_is_question),Rule(condition=person + Star(Any(), greedy=False) + place + Star(Any(), greedy=False),action=where_is_from_question),Rule(condition=movie + Star(Any(), greedy=False) + intro + Star(Any(), greedy=False) ,action=movie_intro_question)]         return rules

该函数中我们设置了一些简单的匹配规则,例如我们设置 ‘’’movie = (W(pos=”nz”))’’‘,即movie 的词性应该是nz。其中的W()是我们在继承REfO的Predicate方法的基础上扩展更新了match方法。您可以简单的把它理解为re中compile后的match,只不过多个W()间出现的顺序可以变化。这样通过多个定制的W()和Star(Any(), greedy=False)(相当于.*?)这种通配符的组合,我们就定义了一组匹配规则,当遇到符合该规则的句子时,就选取该规则后action对应的查询模板。

例如当输入为“周星驰是谁”这样的问题时,会匹配到rules 中的 第一条规则。而后执行该规则后对应的action, who_is_question。而who_is_question对应的查询模板为:

def who_is_question(x):select = u"?x0"               sparql = Nonefor w in x:if w.pos == "nr" or w.pos == "x":e = u" ?a :actor_chName '{person}'. \n \ ?a :actor_bio ?x0".format(person=w.token.decode("utf-8"))sparql = SPARQL_TEM.format(preamble=SPARQL_PREAMBLE,select=select,expression=INDENT + e)breakreturn sparql

有了查询模板后,我们通过SPARQLWrapper 模块的SPARQLWrapper 执行该查询,并对返回的结果进行转换得到回答。对应的代码如下:

from SPARQLWrapper import SPARQLWrapper, JSON    
from utils.word_tagging import Tagger
from utils.rules import customize_rules                   if __name__ == "__main__":    print("init...........")    sparql_base = SPARQLWrapper("http://localhost:3030/kg_demo_movie/query")#加载外部词典,提升分词准确性和词性标注准确性tagger = Tagger(['data/actorName.txt', 'data/movieName.txt'])#初始化并获取规则列表rules = customize_rules()   print("done \n")    while True:    print("Please input your question: ")    default_question = raw_input()    # 获取wordclassseg_list = tagger.get_word_objects(default_question)for rule in rules:    # 将规则列表应用到问题上得到查询模板query = rule.apply(seg_list)    if query:    # 设置查询相关sparql_base.setQuery(query)    sparql_base.setReturnFormat(JSON)         # 得到返回结果并做转换results = sparql_base.query().convert()   if not results["results"]["bindings"]:    print("No answer found :(")    continue    for result in results["results"]["bindings"]:print "Result: ", result["x0"]["value"]

这篇关于实践篇(5):基于REfO的简单知识问答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393820

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程