正负样本不均衡解决方案

2023-11-11 23:28

本文主要是介绍正负样本不均衡解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

、欠采样和过采样

参考:https://www.jianshu.com/p/256f83cecbc8

欠采样:去除训练集内一些多数样本,使得两类数据量级接近,然后再正常进行学习。(数据量足够时使用此方法)。缺点是,若随机丢弃样本,可能丢失多数类的重要信息。

改进的欠采样的代表算法是EasyEnsemble:利用集成学习机制,它将多数样本划分成若 N个集合,然后将划分过后的集合与少数样本组合,这样就形成了N个训练集合,而且每个训练结合都进行了欠采样,但从全局来看却没有信息丢失。

过采样:对训练集内的少数样本进行扩充,既增加少数样本使得两类数据数目接近,然后再进行学习。(数据量不足时使用此方法)。简单粗暴的方法是复制少数样本,缺点是虽然引入了额外的训练数据,但没有给少数类样本增加任何新的信息,非常容易造成过拟合。

过采样的代表算法是SMOTE(原始论文)和ADASYN。 举例,SMOTE算法:通过对少数样本进行插值来获取新样本,比如对于每个少数类样本a,从a最邻近的样本中选取样本b,然后在对ab 中随机选择一点作为新样本。

二、通过正负样本的惩罚权重解决样本不均衡

通过正负样本的惩罚权重解决样本不均衡的问题的思想是在算法实现过程中,对于分类中不同样本数量的类别分别赋予不同的权重(一般思路分类中的小样本量类别权重高,大样本量类别权重低),然后进行计算和建模。

比如带权重的交叉上损失函数,Focal loss等。

交叉熵损失函数

Focal Loss

三、通过组合/集成方法解决样本不均衡

组合/集成方法指的是在每次生成训练集时使用所有分类中的小样本量,同时从分类中的大样本量中随机抽取数据来与小样本量合并构成训练集,这样反复多次会得到很多训练集和训练模型。最后在应用时,使用组合方法(例如投票、加权投票等)产生分类预测结果。

四、尝试不同的分类的算法

因为不同的算法适用于不同的任务与数据,应该使用不同的算法进行比较。决策树往往在类别不均衡数据上表现不错。它使用基于类变量的划分规则去创建分类树,因此可以强制地将不同类别的样本分开。目前流行的决策树算法有:C4.5、C5.0、CART和Random Forest等。

五、从一个新的角度理解问题

1、对于正负样本极不平衡的场景,我们可以换一个完全不同的角度来看待问题:把它看做一分类(one class learning) 或异常检测问题,这类方法的重点不在于捕捉类间的差别,而是为其中一类进行建模,比较有代表性的是 one-class-SVM。
2、对丰富类进行聚类操作,然后进行有监督学习。
首先,我们可以对具有大量样本的丰富类进行聚类操作。假设我们使用的方法是 K-Means聚类算法 。此时,我们可以选择K值为稀有类中的数据样本的个数,并将聚类后的中心点以及相应的聚类中心当做富类样本的代表样例,类标与富类类标一致。经过聚类操作,我们对富类训练样本进行了筛选,接下来我们就可以将相等样本数的K个正负样本进行有监督训练。

六、样本不均衡分类器的评价指标

准确度这个评价指标在类别不均衡的分类任务中并不适用,甚至进行误导。因此在类别不均衡分类任务中,需要使用更有说服力的评价指标来对分类器进行评价。
对于样本不均衡的数据来说,需要用“召回率(Recall)”、“精确率(Precision)”和“综合评价指标(F-Mmeasure)”来评估模型。

这篇关于正负样本不均衡解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393522

相关文章

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到