java语言解决旅行售货员问题(分支限界法)

2023-11-11 22:40

本文主要是介绍java语言解决旅行售货员问题(分支限界法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、什么是旅行售货员问题

1.1基本介绍

2.问题描述

3.代码实现 


1、什么是旅行售货员问题

旅行售货员问题(travelling salesman problem)是一类组合最优化问题,设有一个售货员从城市1出发,到城市2,3,…,n去推销货物,最后回到城市1.假定任意两个城市i,j间的距离dij(dij=dji)是已知的,问他应沿着什么样的路线走,才能使走过的路线最短?容易看出,中国邮递员问题要求走遍所有“线”,而后者要求走遍所有“点”,旅行售货员问题就是在一个完全网络中,找出一个具有最小权的哈密顿圈,寻求旅行售货员问题的有效算法似乎是没有希望的,它属于NP完全类,一个可行的办法是首先求一个哈密顿圈,然后适当修改,以得到具较小权的另一个哈密顿圈,旅行售货员问题有着明显的实际意义,除售货员之外,邮局里负责到各个信箱取信的邮递员,以及去各个分局送邮件的汽车等都会类似地遇到这个问题,还有一些问题表面上似乎与之无关,而实质上却可以归结为旅行售货员问题求解,如计算机线路问题、无中间存储的工件加工问题等 [1]  。

1.1基本介绍

设有p个城镇,已知每两个城镇之间的距离,一个售货员从某一城镇出发巡回售货,问这个售货员应如何选择路线,能使每个城镇经过一次且仅一次,最后返回到出发地,而使总的行程最短?这个问题称为旅行售货员问题。容易看出,旅行售货员问题就是在一个赋权完全图中找一个具有最小权的Hamilton圈,我们称这种圈为最优Hamilton圈。

除旅行售货员问题之外,邮局中负责到各个信箱取信的邮递员,以及去各个分局送邮件的汽车等都会类似遇到这种问题,还有一些问题表面上似乎与之无关,而实质上却可以归结为旅行售货员问题来解决,既然这个问题有着如此广泛的应用,那么找一个求解最优Hamilton圈的有效算法就成为一件非常重要的事 [2]  

2.问题描述


某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。他要选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程( 或旅费)最小。各个城市之间可能是有向连通的、无向连通的、以及存在某个城市不连通的情况,你的程序应该能够处理所有可能的情况。如下图表示各个城市间无向连通。

 输入:
第一行为一个整数n(n<=10),表示城市的总个数。接下来是一个n*n的矩阵,用来表示城市间的连通情况以及花费,例如path[i][j]=len,len=-1表示从城市i到城市j没有通路,len>0表示从i到j的路程长度为len。对于上面图示的问题我们可以按照下面方式输入:

4
-1 30 6 4
30 -1 5 10
6 5 -1 20
4 10 20 -1

输出:25

3.代码实现 


import java.util.Scanner;
public class ts
{
public static void main(String args[])
{
Scanner s=new Scanner(System.in);
int n=0;//结点的个数
String line=s.nextLine();//读入n
n=Integer.parseInt(line);
a=new float[n][n];
int []vv=new int[n];for(int i=0;i<n;i++)
{
line=s.nextLine();
String []sArray=line.split(" ");
for(int j=0;j<sArray.length;j++)
{
a[i][j]=Integer.parseInt(sArray[j]);
}
}
System.out.println(bbTsp(vv));
}
static float [][]a;
private static class HeapNode implements Comparable
{
float lcost,//子树费用下界
cc,//当前费用
rcost;//X[s:n-1]中顶点最小出边费用和
int s;//根节点到当前结点的路径为X[0:s]
int []x;//需要进一步搜索的结点是x[s+1:n-1]
//HeapNode的构造函数
HeapNode(float lc,float ccc,float rc,int ss,int []xx)
{
lcost=lc;
cc=ccc;
s=ss;
x=xx;
}//HeapNode 构造函数
public int compareTo(Object x)
{
float xlc=((HeapNode)x).lcost;
if(lcost<xlc)
return -1;
if(lcost==xlc)
return 0;
return 1;
}
}
public static int  bbTsp(int []v)
{
int n=v.length;
MinHeap heap=new MinHeap(100);
float []minOut=new float[n];//minOut[i]是顶点i的最小出边费用
float minSum=0;//最小出边费用和
//计算最小出边费用和
for(int i=0;i<n;i++)
{
float min=Float.MAX_VALUE;
for(int j=0;j<n;j++)
{
if(a[i][j]!=-1&&a[i][j]<min)
min=a[i][j];//有回路
}//for j
if(min==Float.MAX_VALUE)
{
return -1;//无回路
}
minOut[i]=min;
minSum+=min;
}
int []x=new int[n];
for(int i=0;i<n;i++)
{
x[i]=i;
}
HeapNode enode=new HeapNode(0,0,minSum,0,x);
float bestc=Float.MAX_VALUE;
//搜索排列空间树
while(enode!=null&&enode.s<n-1)
{
//System.out.println(bestc);
x=enode.x;
if(enode.s==n-2)//叶子结点
{
if(a[x[n-2]][x[n-1]]!=-1&&
a[x[n-1]][1]!=-1||
bestc==Float.MAX_VALUE)//当前最优解还不存在的情况
{
bestc=enode.cc+a[x[n-2]][x[n-1]]+a[x[n-1]][0];
enode.cc=bestc;
enode.lcost=bestc;
enode.s++;
heap.put(enode);
}
}
else
{
for(int i=enode.s+1;i<n;i++)
{
if(a[x[enode.s]][x[i]]!=-1)
{
float cc=enode.cc+a[x[enode.s]][x[i]];
float rcost=enode.rcost-minOut[x[enode.s]];
float b=cc+rcost;
if(b<bestc)
{
int []xx=new int[n];
for(int j=0;j<n;j++)
xx[j]=x[j];
xx[enode.s+1]=x[i];
xx[i]=x[enode.s+1];
HeapNode node=new HeapNode(b,cc,rcost,enode.s+1,xx);
heap.put(node);
}
}
}
}
enode=(HeapNode)heap.removeMin();
}
for(int i=0;i<n;i++)
v[i]=x[i];
return (int)bestc;
}
public static class MinHeap
{
private HeapNode[] heapArray; // 堆容器
private int maxSize; // 堆的最大大小
private int currentSize=0; // 堆大小
//构造函数
public MinHeap(int _maxSize)
{
maxSize = _maxSize;
heapArray = new HeapNode[maxSize];
currentSize = 0;
}
//自上而下调整
public void filterDown(int start, int endOfHeap)
{
int i = start;
int j = 2 * i + 1; // j是i的左子女位置
HeapNode temp = heapArray[i];
while (j <= endOfHeap)
{ // 检查是否到最后位置
if (j < endOfHeap // 让j指向两子女中的小者
&& heapArray[j].cc > heapArray[j + 1].cc)
{
j++;
}
if (temp.cc <= heapArray[j].cc)
{ // 小则不做调整
break;
} else
{ // 否则小者上移,i,j下降
heapArray[i] = heapArray[j];
i = j;
j = 2 * j + 1;
}
}
heapArray[i] = temp;
}//filterDown//自下而上的调整:从结点start开始到0为止,自下向上比较,如果子女的值小于双亲结点的值则互相交换
public void filterUp(int start)
{
int j = start;
int i = (j - 1) / 2;
HeapNode temp = heapArray[j];while (j > 0)
{ // 沿双亲结点路径向上直达根节点
if (heapArray[i].cc <= temp.cc)
{// 双亲结点值小,不调整
break;
} else {// 双亲结点值大,调整
heapArray[j] = heapArray[i];
j = i;
i = (i - 1) / 2;
}
heapArray[j] = temp; // 回送
}
}//filterUp//插入结点
public void put(HeapNode node)
{
HeapNode newNode = node;
heapArray[currentSize] = newNode;
filterUp(currentSize);
currentSize++;
}
//删除堆中的最小值
public HeapNode removeMin()
{
HeapNode root = heapArray[0];
heapArray[0] = heapArray[currentSize - 1];
currentSize--;
filterDown(0, currentSize - 1);
return root;
}
}
}

 实例输入

这篇关于java语言解决旅行售货员问题(分支限界法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393300

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java Map排序如何按照值按照键排序

《JavaMap排序如何按照值按照键排序》该文章主要介绍Java中三种Map(HashMap、LinkedHashMap、TreeMap)的默认排序行为及实现按键排序和按值排序的方法,每种方法结合实... 目录一、先理清 3 种 Map 的默认排序行为二、按「键」排序的实现方式1. 方式 1:用 TreeM

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node