运筹说 第102期 | 非线性规划—制约函数法

2023-11-11 22:12

本文主要是介绍运筹说 第102期 | 非线性规划—制约函数法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       通过上期学习,大家已经了解了非线性规划中约束极值问题的最优性条件。本期小编将为大家介绍约束极值问题的求解方法:制约函数法,包括概念以及最基本的两种制约函数法:罚函数法障碍函数法等内容。

图片

       制约函数法是通过构造某种制约函数,并将它加到非线性规划的目标函数上,从而将原来的约束极值问题,转化为无约束极值问题来求解。此处介绍的方法用来求解一系列无约束问题,故称为序列无约束极小化技术。

一、罚函数法

        对于非线性规划

图片

构造函数

图片

g_{j}(X)视为t,将约束条件的函数加到原目标函数中,构造新的目标函数:

图片

      新的目标函数转变为求解无约束问题,假定该问题极小点为X*,必有g_{j}(X)\geq 0X*是新构造无约束问题的极小点,同样也是原非线性规划问题的极小点。

       但是,如上构造的函数ψ(t)在0处不连续,不可导,这就无法使用很多有效的无约束极值极小化方法进行求解。因此将其修改为

图片

       修改后的ψ(t)处处可导,ψ(t)ψ′(t)处处连续。这时,修改后的函数的极小点不一定就是原非线性规划问题的极小点。于是,选取很大的实数M>0,作为惩罚因子,则得到

图片

该式也可以写成另一种形式

图片

在这个式子中,M称为惩罚因子M\sum_{j=1}^{l}\Psi (g_{j}(\mathbf{X}))为惩罚项,P(X,M)罚函数

X∈R时,P(X,M)=P(X);当X∉R时,M\sum_{j=1}^{l}\Psi (g_{j}(\mathbf{X)})就会很大,离可行域越远,惩罚越大。当M足够大时,是新构造无约束问题的极小点,同样也是原非线性规划问题的极小点。

       现引进阶跃函数

图片

得到如下转变

图片

       随着罚因子M增大,惩罚项起到的作用就越大,minP(X,M)越趋近于可行域d_{0},当0<M1<M2<...Mk<...,趋于无穷大时,点列\left \{ \mathbf{X}(M_{k}) \right \}会从可行域R的外部趋于原非线性规划的问题的极小点(此处假设点列\left \{ \mathbf{X}(M_{k}) \right \}收敛)。

       和不等式约束问题类似,对于等式约束问题,也可做如下变换:

图片

对于既含有等式约束,又有不等式约束的一般非线性规划问题

图片

其罚函数为

图片

图片

迭代步骤

       (1)取第一个罚因子M_{1}>0,允许ε>0,并令k:=1。

       (2)求下述无约束极值问题的最优解:minP(\mathbf{X},M_{k}),设其极小点为\mathbf{X}^{(k)}

       (3)若存在某一个j (1≤jl),有-g_{j}(X)>\varepsilon,或(和)存在某一个(1≤im),有\left | h_{i} (X^{K})\right |> \varepsilon,则取M_{k+1}>M_{k}(例如M_{k+1}=cM_{k},c=5),并令K:=k+1。然后,转回第(2)步;否则停止迭代,得到所要的点\mathbf{X}^{(k)}

例题

       用罚函数法求解

图片

解:

(1)构造罚函数

图片

(2)对于固定的M,令

图片

对于不满足约束条件的点x,有

图片

(3)求得其极小点x(M)

图片

M=0,x(M)=1/2

M=1,x(M)=1/4

M=10,x(M)=1/22

M→∞,x(M)→0

因此,原约束问题的极小点x*=0

图片

二、障碍函数法

       对于罚函数而言,函数P(X,M)可在整个E_{n}空间内进行优化,迭代过程往往在可行域外进行,不能以中间结果作为近似解使用。同时,目标函数在可行域外的性质比较复杂,甚至没有定义,就无法使用罚函数法。

       障碍函数法与其不同,该方法要求迭代过程始终在可行域内进行。如果初始迭代点取在可行域内部(严格内点),在进行无约束极小化时,会阻止函数迭代到R的边界上,使迭代过程始终在可行域内部。此时的极小化是在不包括可行域边界的可行域开集上进行的,是一种具有无约束性质的极值问题,可用无约束极小化方法求解。

       考虑非线性规划

图片

       当X点从可行域R内部趋于边界时,至少有某一个约束函数g_{j}(X)(j=1,2,...,l)趋于0,从而得到倒数函数\sum_{j=1}^{l}\frac{1}{g_{j}(\mathbf{X})}以及(负)对数函数-\sum_{j=1}^{l}lg(g_{j}(\mathbf{X}))都无限增大。

把倒数函数或对数函数加到目标函数上,则能构成新目标函数。取实数并构成一系列无约束性质的极小化问题如下:

图片

其中

图片

图片

此处,R_{0}为严格内点的集合,即

图片

       上述式子中,r_{k}\sum_{j=1}^{l}\frac{1}{g_{j}(\mathbf{X})}r_{k}\sum_{j=1}^{l}lg(g_{j}(\mathbf{X}))被称为障碍项,此处r_{k}为障碍因\left (r_{k}>0\right ),函数\bar{P}(\mathbf{X},r_{k})障碍函数

       若从某一点X^{(0)}出发,按无约束极小化方法对问题进行迭代,随着障碍因子r_{k}减小,障碍项起到的作用越小,minP(X,M)求得的解会逐步逼近原约束问题的最小解。

r_{1}>r_{2}>...r_{k}>...>0

       因而,求得问题的解X(r_{k})就会逐步逼近原约束问题的极小解。若原问题在可行域R的边界上,则随着r_{k}的减小,所求得障碍函数的极小点会不断靠近R的边界,直到满足某一精度要求时为止。

迭代步骤

(1)取第一个障碍因子r_{1}>0,允许误差ε>0,并令k:=1。

(2)构造障碍函数,如下所示。

图片

(3)对障碍函数进行无约束极小化(注意,迭代点必须在R_{0}内),设极小解为X^{(k)}\in R_{0}

(4)检查是否满足收敛准则:

图片

满足则停止迭代并得到所要的近似极小解{X}^{(k)}。否则取r_{(k+1)}<r_{k}并令k:=k+1。然后,转回第(3)步继续迭代。

例题

       用障碍函数法求解

图片

解:

(1)构造障碍函数

图片

(2)对于固定的r_{k},由

图片

(3)求得其极小点x(r)x(r)=\pm \sqrt{r_{k}}

r=1,x(r)=1

r=0.1,x(r)=0.316

r=0.01,x(r)=0.1

r→0,x(r)→0

因此,原约束问题的极小点 x*= 0

图片

初始内点迭代步骤

(1)任取一点X^{(1)}\in E_{n}r_{1}>0,并令k:=1。

(2)确定指标集\bar{T_{k}}T_{k}

图片

(3)检查\bar{T_{k}}是否为空集,若为空集,则取X^{(k)}为初始内点,停止迭代;否则,进行下一步。

(4)构造函数,将严格不等式不能满足的约束函数为假拟目标函数,严格满足的约束函数形成障碍项,构成一无约束性质问题,构造函数

图片

X^{(k)}为初始点,求解

图片

其中,

图片

设求出的极小点\mathbf{X}^{(k+1)},则\mathbf{X}^{(k+1)}\in \bar{R_{k}}。令0\leq r_{k+1}\leq r_{k}k:=k+1,转回第(2)步。

       以上就是非线性规划中罚函数法与障碍函数法的全部内容了,通过本节学习大家是否对制约函数法有了一个大致的认识呢?到此为止,非线性规划的所有知识点就已经介绍完了,想要进一步了解运筹学,关注公众号运筹说,快快学起来吧!下期小编将为大家介绍与非线性规划相关的精品案例,敬请关注!

作者 |林若唯 唐京茹

责编 | 陈梦

审核 | 徐小峰

知乎 :运筹说

Bilibili :运筹说

 CSDN :运筹说

这篇关于运筹说 第102期 | 非线性规划—制约函数法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/393164

相关文章

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST

Kotlin运算符重载函数及作用场景

《Kotlin运算符重载函数及作用场景》在Kotlin里,运算符重载函数允许为自定义类型重新定义现有的运算符(如+-…)行为,从而让自定义类型能像内置类型那样使用运算符,本文给大家介绍Kotlin运算... 目录基本语法作用场景类对象数据类型接口注意事项在 Kotlin 里,运算符重载函数允许为自定义类型重

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印