运筹说 第102期 | 非线性规划—制约函数法

2023-11-11 22:12

本文主要是介绍运筹说 第102期 | 非线性规划—制约函数法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       通过上期学习,大家已经了解了非线性规划中约束极值问题的最优性条件。本期小编将为大家介绍约束极值问题的求解方法:制约函数法,包括概念以及最基本的两种制约函数法:罚函数法障碍函数法等内容。

图片

       制约函数法是通过构造某种制约函数,并将它加到非线性规划的目标函数上,从而将原来的约束极值问题,转化为无约束极值问题来求解。此处介绍的方法用来求解一系列无约束问题,故称为序列无约束极小化技术。

一、罚函数法

        对于非线性规划

图片

构造函数

图片

g_{j}(X)视为t,将约束条件的函数加到原目标函数中,构造新的目标函数:

图片

      新的目标函数转变为求解无约束问题,假定该问题极小点为X*,必有g_{j}(X)\geq 0X*是新构造无约束问题的极小点,同样也是原非线性规划问题的极小点。

       但是,如上构造的函数ψ(t)在0处不连续,不可导,这就无法使用很多有效的无约束极值极小化方法进行求解。因此将其修改为

图片

       修改后的ψ(t)处处可导,ψ(t)ψ′(t)处处连续。这时,修改后的函数的极小点不一定就是原非线性规划问题的极小点。于是,选取很大的实数M>0,作为惩罚因子,则得到

图片

该式也可以写成另一种形式

图片

在这个式子中,M称为惩罚因子M\sum_{j=1}^{l}\Psi (g_{j}(\mathbf{X}))为惩罚项,P(X,M)罚函数

X∈R时,P(X,M)=P(X);当X∉R时,M\sum_{j=1}^{l}\Psi (g_{j}(\mathbf{X)})就会很大,离可行域越远,惩罚越大。当M足够大时,是新构造无约束问题的极小点,同样也是原非线性规划问题的极小点。

       现引进阶跃函数

图片

得到如下转变

图片

       随着罚因子M增大,惩罚项起到的作用就越大,minP(X,M)越趋近于可行域d_{0},当0<M1<M2<...Mk<...,趋于无穷大时,点列\left \{ \mathbf{X}(M_{k}) \right \}会从可行域R的外部趋于原非线性规划的问题的极小点(此处假设点列\left \{ \mathbf{X}(M_{k}) \right \}收敛)。

       和不等式约束问题类似,对于等式约束问题,也可做如下变换:

图片

对于既含有等式约束,又有不等式约束的一般非线性规划问题

图片

其罚函数为

图片

图片

迭代步骤

       (1)取第一个罚因子M_{1}>0,允许ε>0,并令k:=1。

       (2)求下述无约束极值问题的最优解:minP(\mathbf{X},M_{k}),设其极小点为\mathbf{X}^{(k)}

       (3)若存在某一个j (1≤jl),有-g_{j}(X)>\varepsilon,或(和)存在某一个(1≤im),有\left | h_{i} (X^{K})\right |> \varepsilon,则取M_{k+1}>M_{k}(例如M_{k+1}=cM_{k},c=5),并令K:=k+1。然后,转回第(2)步;否则停止迭代,得到所要的点\mathbf{X}^{(k)}

例题

       用罚函数法求解

图片

解:

(1)构造罚函数

图片

(2)对于固定的M,令

图片

对于不满足约束条件的点x,有

图片

(3)求得其极小点x(M)

图片

M=0,x(M)=1/2

M=1,x(M)=1/4

M=10,x(M)=1/22

M→∞,x(M)→0

因此,原约束问题的极小点x*=0

图片

二、障碍函数法

       对于罚函数而言,函数P(X,M)可在整个E_{n}空间内进行优化,迭代过程往往在可行域外进行,不能以中间结果作为近似解使用。同时,目标函数在可行域外的性质比较复杂,甚至没有定义,就无法使用罚函数法。

       障碍函数法与其不同,该方法要求迭代过程始终在可行域内进行。如果初始迭代点取在可行域内部(严格内点),在进行无约束极小化时,会阻止函数迭代到R的边界上,使迭代过程始终在可行域内部。此时的极小化是在不包括可行域边界的可行域开集上进行的,是一种具有无约束性质的极值问题,可用无约束极小化方法求解。

       考虑非线性规划

图片

       当X点从可行域R内部趋于边界时,至少有某一个约束函数g_{j}(X)(j=1,2,...,l)趋于0,从而得到倒数函数\sum_{j=1}^{l}\frac{1}{g_{j}(\mathbf{X})}以及(负)对数函数-\sum_{j=1}^{l}lg(g_{j}(\mathbf{X}))都无限增大。

把倒数函数或对数函数加到目标函数上,则能构成新目标函数。取实数并构成一系列无约束性质的极小化问题如下:

图片

其中

图片

图片

此处,R_{0}为严格内点的集合,即

图片

       上述式子中,r_{k}\sum_{j=1}^{l}\frac{1}{g_{j}(\mathbf{X})}r_{k}\sum_{j=1}^{l}lg(g_{j}(\mathbf{X}))被称为障碍项,此处r_{k}为障碍因\left (r_{k}>0\right ),函数\bar{P}(\mathbf{X},r_{k})障碍函数

       若从某一点X^{(0)}出发,按无约束极小化方法对问题进行迭代,随着障碍因子r_{k}减小,障碍项起到的作用越小,minP(X,M)求得的解会逐步逼近原约束问题的最小解。

r_{1}>r_{2}>...r_{k}>...>0

       因而,求得问题的解X(r_{k})就会逐步逼近原约束问题的极小解。若原问题在可行域R的边界上,则随着r_{k}的减小,所求得障碍函数的极小点会不断靠近R的边界,直到满足某一精度要求时为止。

迭代步骤

(1)取第一个障碍因子r_{1}>0,允许误差ε>0,并令k:=1。

(2)构造障碍函数,如下所示。

图片

(3)对障碍函数进行无约束极小化(注意,迭代点必须在R_{0}内),设极小解为X^{(k)}\in R_{0}

(4)检查是否满足收敛准则:

图片

满足则停止迭代并得到所要的近似极小解{X}^{(k)}。否则取r_{(k+1)}<r_{k}并令k:=k+1。然后,转回第(3)步继续迭代。

例题

       用障碍函数法求解

图片

解:

(1)构造障碍函数

图片

(2)对于固定的r_{k},由

图片

(3)求得其极小点x(r)x(r)=\pm \sqrt{r_{k}}

r=1,x(r)=1

r=0.1,x(r)=0.316

r=0.01,x(r)=0.1

r→0,x(r)→0

因此,原约束问题的极小点 x*= 0

图片

初始内点迭代步骤

(1)任取一点X^{(1)}\in E_{n}r_{1}>0,并令k:=1。

(2)确定指标集\bar{T_{k}}T_{k}

图片

(3)检查\bar{T_{k}}是否为空集,若为空集,则取X^{(k)}为初始内点,停止迭代;否则,进行下一步。

(4)构造函数,将严格不等式不能满足的约束函数为假拟目标函数,严格满足的约束函数形成障碍项,构成一无约束性质问题,构造函数

图片

X^{(k)}为初始点,求解

图片

其中,

图片

设求出的极小点\mathbf{X}^{(k+1)},则\mathbf{X}^{(k+1)}\in \bar{R_{k}}。令0\leq r_{k+1}\leq r_{k}k:=k+1,转回第(2)步。

       以上就是非线性规划中罚函数法与障碍函数法的全部内容了,通过本节学习大家是否对制约函数法有了一个大致的认识呢?到此为止,非线性规划的所有知识点就已经介绍完了,想要进一步了解运筹学,关注公众号运筹说,快快学起来吧!下期小编将为大家介绍与非线性规划相关的精品案例,敬请关注!

作者 |林若唯 唐京茹

责编 | 陈梦

审核 | 徐小峰

知乎 :运筹说

Bilibili :运筹说

 CSDN :运筹说

这篇关于运筹说 第102期 | 非线性规划—制约函数法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393164

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段