【python海洋专题四十六】研究区域示意放大图

2023-11-11 15:52

本文主要是介绍【python海洋专题四十六】研究区域示意放大图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【python海洋专题四十六】研究区域示意放大图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图片

往期推荐

图片
【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件

【python海洋专题二】读取水深nc文件并水深地形图
【python海洋专题三】图像修饰之画布和坐标轴

【Python海洋专题四】之水深地图图像修饰

【Python海洋专题五】之水深地形图海岸填充

【Python海洋专题六】之Cartopy画地形水深图

【python海洋专题】
测试数据

【Python海洋专题七】Cartopy画地形水深图的陆地填充

【python海洋专题八】Cartopy画地形水深图的contourf填充间隔数调整

【python海洋专题九】Cartopy画地形等深线图

【python海洋专题十】Cartopy画特定区域的地形等深线图

【python海洋专题十一】colormap调色

【python海洋专题十二】年平均的南海海表面温度图

【python海洋专题十三】读取多个nc文件画温度季节变化图

【python海洋专题十四】读取多个盐度nc数据画盐度季节变化图

【python海洋专题十五】给colorbar加单位

【python海洋专题十六】对大陆周边的数据进行临近插值

【python海洋专题十七】读取几十年的OHC数据,画四季图

【python海洋专题十八】读取Soda数据,画subplot的海表面高度四季变化图

【python海洋专题十九】找范围的语句进阶版本

【python海洋专题二十】subplots_adjust布局调整

【python海洋专题二十一】subplots共用一个colorbar

【python海洋专题二十二】在海图上text

【python海洋专题二十三】共用坐标轴

【python海洋专题二十四】南海年平均海流图

【python海洋专题二十五】给南海年平均海流+scale

【python海洋专题二十六】南海海流流速图

【python海洋专题二十七】南海四季海流图

【python海洋专题二十八】南海四季海流流速图

【python海洋专题二十九】读取CTD文件数据并画温度点剖面图

【python海洋专题三十】画南海115°E的温度剖面图

【python海洋专题三十一】画南海115°E的地形温度剖面图

【python海洋专题三十二】画南海115°E的地形温度流速剖面图

【python海洋专题三十三】画海洋表面的风场分布

【python海洋专题三十四】调用自己的colormore

【python海洋专题三十五】加密数据–二维插值

【python海洋专题三十六】两个一维数组的相关系数–为海洋指数作准备

【python海洋专题三十七】海洋指数画法–折线图样式一

【python海洋专题三十八】海洋指数画法–折线图样式二

【python海洋专题三十九】海洋指数画法–折线图样式三–不同颜色的线条

【python海洋专题四十】海洋指数画法–单色填充图

【python海洋专题四十一】海洋指数画法–渐变填色图

【python海洋专题四十二】海洋指数画法–双色柱状图

【python海洋专题四十三】海洋指数画法–单色渐变柱状图

【python海洋专题四十四】海洋指数画法–多色渐变柱状图

【python海洋专题四十五】海洋研究区域示意图

【python海洋专题海洋指数画法】大气与海洋指数画法汇总

【MATLAB海洋专题】历史汇总

【matlab程序】图片平面制作||文末点赞分享||海报制作等

大佬推荐一下物理海洋教材吧?

【matlab海洋专题】高级玫瑰图–风速风向频率玫瑰图–此图细节较多

【上千种颜色包|全平台可用】收集自Matlab、python、R、NCL等颜色包

R语言_RColorBrewer包–全平台可用

海洋专用cmocean颜色包_共22种–全平台可用

【matlab教程】matlab不规则区域的外围填充

【海洋科普】沉积物分为粘性沉积物和非粘性沉积物

【海洋科普】黄渤海地理介绍

【科普知识】海洋尺度图和解释

【海洋科普】海洋环流与等高线岩特征联系

代码分享:

# -*- coding: utf-8 -*-"""# Importing related function packages"""
import codecsimport cartopy.crs as ccrs
import matplotlib.ticker as mticker
import cartopy.feature as feature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from matplotlib.colors import ListedColormap
from matplotlib.patches import PathPatch
from matplotlib.path import Path
from matplotlib.transforms import TransformedBbox
from mpl_toolkits.axes_grid1.inset_locator import BboxConnector, BboxPatch
from netCDF4 import Dataset
from pylab import *
from palettable.colorbrewer.sequential import GnBu_9
import matplotlib.pyplot as plt# colormap颜色的倒置
def reverse_colourmap(cmap, name='my_cmap_r'):reverse = []k = []for key in cmap._segmentdata:k.append(key)channel = cmap._segmentdata[key]data = []for t in channel:data.append((1 - t[0], t[2], t[1]))reverse.append(sorted(data))LinearL = dict(zip(k, reverse))my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)return my_cmap_r# 子图连线函数
def mark_inset(parent_axes, inset_axes, loc1a, loc1b, loc2a, loc2b, **kwargs):rect = TransformedBbox(inset_axes.viewLim, parent_axes.transData)pp = BboxPatch(rect, fill=False, **kwargs)parent_axes.add_patch(pp)p1 = BboxConnector(inset_axes.bbox, rect, loc1=loc1a, loc2=loc1b, **kwargs)inset_axes.add_patch(p1)p1.set_clip_on(False)p2 = BboxConnector(inset_axes.bbox, rect, loc1=loc2a, loc2=loc2b, **kwargs)inset_axes.add_patch(p2)p2.set_clip_on(False)return pp, p1, p2"""read——my_color"""
# ----01----读取颜色--后续使用-high light red
filename = 'D:\matlab_work\函数名为colormore的颜色索引表制作\R_color_txt\R_color_single\\red1.txt'
file = open(filename, 'r')
lines = file.readlines()
file.close()
data1 = []
for line in lines:data1.append(float(line.strip()))
red = np.array(data1)
#   ---01--01----shallow ----gray----
filename = 'D:\matlab_work\函数名为colormore的颜色索引表制作\R_color_txt\R_color_single\\gray40.txt'
file = open(filename, 'r')
lines = file.readlines()
file.close()
data1 = []
for line in lines:data1.append(float(line.strip()))
gray = np.array(data1)
#   ---01--02----shallow ----gray----
filename = 'D:\matlab_work\函数名为colormore的颜色索引表制作\R_color_txt\R_color_single\\gray90.txt'
file = open(filename, 'r')
lines = file.readlines()
file.close()
data1 = []
for line in lines:data1.append(float(line.strip()))
gray90 = np.array(data1)
#   ---01--02----shallow ----gray----
filename = 'D:\matlab_work\函数名为colormore的颜色索引表制作\R_color_txt\R_color_single\\gray0.txt'
file = open(filename, 'r')
lines = file.readlines()
file.close()
data1 = []
for line in lines:data1.append(float(line.strip()))
gray0 = np.array(data1)
# ---02---自带--colormap
cmap1 = GnBu_9.mpl_colormap
cmap1_r1 = reverse_colourmap(cmap1)
# ----03--自己的----
# ---rear_my_color  65-53-56-49-55-
f = codecs.open("D:\matlab_work\函数名为colormore的颜色索引表制作\colormore_txt\\colormore_68.txt", mode='r')  # 打开txt文件
color_1, color_2, color_3 = [], [], []
for line in f.readlines()[0:]:a = line.split()a = [float(i) for i in a]color_1.append(a[0])color_2.append(a[1])color_3.append(a[2])
line = f.readline()
f.close()
colo = np.stack((color_1, color_2, color_3), 0)
color = np.transpose(colo)
color=np.flip(color, axis=0)
# 将rgb信息映射为colormap
colormap1 = ListedColormap(color)
#----cmocean--topo---
# ---rear_my_color
f = codecs.open("D:\matlab_work\函数名为colormore的颜色索引表制作\cmocean_txt\\topo.txt", mode='r')  # 打开txt文件
color_1, color_2, color_3 = [], [], []
for line in f.readlines()[0:]:a = line.split()a = [float(i) for i in a]color_1.append(a[0])color_2.append(a[1])color_3.append(a[2])
line = f.readline()
f.close()
colo = np.stack((color_1, color_2, color_3), 0)
color = np.transpose(colo)
# 将rgb信息映射为colormap
colormap2 = ListedColormap(color)
"""ax1的框"""
vertices = []
codes = []
codes = [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY]
vertices = [(100, 0), (100, 45), (135, 45), (135, 0), (100, 0)]
# vertices = [(-80, 0), (-80, 45), (-45, 45), (-45, 0), (-80, 0)]
vertices = np.array(vertices, float)
path = Path(vertices, codes)
pathpatch = PathPatch(path, facecolor='none', edgecolor=red / 256, lw=1)
"""读取地形数据"""
a = Dataset('D:\pycharm_work\data\etopo2.nc')
lon = a.variables['lon'][:]
lat = a.variables['lat'][:]
ele = a.variables['topo'][:]
# scs and east sea of China range is lon from 100 to 130;lat from 0 to 45;
ln1 = np.where(lon >= 100)[0][0]
ln2 = np.where(lon >= 135)[0][0]
la1 = np.where(lat >= 0)[0][0]
la2 = np.where(lat >= 45)[0][0]
# # # 画图网格
lon1 = lon[ln1:ln2]
lat1 = lat[la1:la2]
X, Y = np.meshgrid(lon1, lat1)
ele_aim = ele[la1:la2, ln1:ln2]
"""# 设置地图全局属性"""
plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
fig = plt.figure(dpi=300, figsize=(3.5, 2), facecolor='w', edgecolor='w')  # 设置一个画板,将其返还给fig
"""左图--big area"""
ax = fig.add_axes([0.05, 0.05, 0.4, 0.95], projection=ccrs.PlateCarree())
ax.set_extent([0, 180, -90, 90], crs=ccrs.PlateCarree())  # 设置显示范围
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.05, edgecolor=gray90/256)  # 添加海岸线:关键字lw设置线宽;lifestyle设置线型
ax.add_feature(feature.OCEAN)
ax.stock_img()  # 添加地球背景
# ---tick set--
ax.set_xticks(np.arange(0, 181, 30), crs=ccrs.PlateCarree())
ax.set_yticks(np.arange(-90, 91, 30), crs=ccrs.PlateCarree())
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.set_xticks(np.arange(0, 181, 30), crs=ccrs.PlateCarree(), minor=True)
ax.set_yticks(np.arange(-90, 91, 30), crs=ccrs.PlateCarree(), minor=True)
ax.tick_params(labelcolor=gray0/256, length=2, tickdir='in', labelsize=3)
ax.add_patch(pathpatch)
"""右图--放大图"""
ax2 = fig.add_axes([0.5, 0.05, 0.4, 0.9], projection=ccrs.PlateCarree())
ax2.set_extent([100, 135, 0, 45], crs=ccrs.PlateCarree())  # 设置显示范围
cs = ax2.contourf(X, Y, ele_aim, levels=np.arange(-5000, 5000, 33), extend='both', cmap=colormap1,transform=ccrs.PlateCarree())
cf = ax2.contour(lon, lat, ele[:, :], levels=[-3000, -1000], colors='k', linestyles='-',linewidths=0.2, transform=ccrs.PlateCarree())
ax2.add_feature(feature.COASTLINE.with_scale('10m'), lw=0.5, edgecolor=gray0/256)  # 添加海岸线:关键字lw设置线宽;lifestyle设置线型
# ---tick set--
ax2.set_xticks(np.arange(100, 136, 5), crs=ccrs.PlateCarree())
ax2.set_yticks(np.arange(0, 46, 5), crs=ccrs.PlateCarree())
ax2.xaxis.set_major_formatter(LongitudeFormatter())
ax2.yaxis.set_major_formatter(LatitudeFormatter())
ax2.set_xticks(np.arange(100, 136, 5), crs=ccrs.PlateCarree(), minor=True)
ax2.set_yticks(np.arange(0, 46, 5), crs=ccrs.PlateCarree(), minor=True)
ax2.tick_params(labelcolor=gray0/256, length=2, tickdir='in', labelsize=3)
# 左右两个字图连线 来源:https://mp.weixin.qq.com/s/2HE0pYIui96rp5wpgzGC8w
mark_inset(ax, ax2, loc1a=2, loc1b=1, loc2a=3, loc2b=4, fc='none', ec=red / 256, lw=0.5)
# ------colorbar设置
norm = mpl.colors.Normalize(vmin=-5000, vmax=5000)
position = plt.axes([0.91, 0.05, 0.03, 0.9])
cbar = fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=colormap1), cax=position, extend='both', shrink=0.2,label='depth(m)',ticks=np.linspace(-5000, 5000, 11), orientation='vertical')
# cbar.minorticks_on()#小刻度
cbar.ax.tick_params(length=2, labelsize='4', direction='in')
plt.savefig('study_area_sketch_map_046.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
plt.show()

在这里插入图片描述

这篇关于【python海洋专题四十六】研究区域示意放大图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/391184

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四