【python海洋专题四十六】研究区域示意放大图

2023-11-11 15:52

本文主要是介绍【python海洋专题四十六】研究区域示意放大图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【python海洋专题四十六】研究区域示意放大图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图片

往期推荐

图片
【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件

【python海洋专题二】读取水深nc文件并水深地形图
【python海洋专题三】图像修饰之画布和坐标轴

【Python海洋专题四】之水深地图图像修饰

【Python海洋专题五】之水深地形图海岸填充

【Python海洋专题六】之Cartopy画地形水深图

【python海洋专题】
测试数据

【Python海洋专题七】Cartopy画地形水深图的陆地填充

【python海洋专题八】Cartopy画地形水深图的contourf填充间隔数调整

【python海洋专题九】Cartopy画地形等深线图

【python海洋专题十】Cartopy画特定区域的地形等深线图

【python海洋专题十一】colormap调色

【python海洋专题十二】年平均的南海海表面温度图

【python海洋专题十三】读取多个nc文件画温度季节变化图

【python海洋专题十四】读取多个盐度nc数据画盐度季节变化图

【python海洋专题十五】给colorbar加单位

【python海洋专题十六】对大陆周边的数据进行临近插值

【python海洋专题十七】读取几十年的OHC数据,画四季图

【python海洋专题十八】读取Soda数据,画subplot的海表面高度四季变化图

【python海洋专题十九】找范围的语句进阶版本

【python海洋专题二十】subplots_adjust布局调整

【python海洋专题二十一】subplots共用一个colorbar

【python海洋专题二十二】在海图上text

【python海洋专题二十三】共用坐标轴

【python海洋专题二十四】南海年平均海流图

【python海洋专题二十五】给南海年平均海流+scale

【python海洋专题二十六】南海海流流速图

【python海洋专题二十七】南海四季海流图

【python海洋专题二十八】南海四季海流流速图

【python海洋专题二十九】读取CTD文件数据并画温度点剖面图

【python海洋专题三十】画南海115°E的温度剖面图

【python海洋专题三十一】画南海115°E的地形温度剖面图

【python海洋专题三十二】画南海115°E的地形温度流速剖面图

【python海洋专题三十三】画海洋表面的风场分布

【python海洋专题三十四】调用自己的colormore

【python海洋专题三十五】加密数据–二维插值

【python海洋专题三十六】两个一维数组的相关系数–为海洋指数作准备

【python海洋专题三十七】海洋指数画法–折线图样式一

【python海洋专题三十八】海洋指数画法–折线图样式二

【python海洋专题三十九】海洋指数画法–折线图样式三–不同颜色的线条

【python海洋专题四十】海洋指数画法–单色填充图

【python海洋专题四十一】海洋指数画法–渐变填色图

【python海洋专题四十二】海洋指数画法–双色柱状图

【python海洋专题四十三】海洋指数画法–单色渐变柱状图

【python海洋专题四十四】海洋指数画法–多色渐变柱状图

【python海洋专题四十五】海洋研究区域示意图

【python海洋专题海洋指数画法】大气与海洋指数画法汇总

【MATLAB海洋专题】历史汇总

【matlab程序】图片平面制作||文末点赞分享||海报制作等

大佬推荐一下物理海洋教材吧?

【matlab海洋专题】高级玫瑰图–风速风向频率玫瑰图–此图细节较多

【上千种颜色包|全平台可用】收集自Matlab、python、R、NCL等颜色包

R语言_RColorBrewer包–全平台可用

海洋专用cmocean颜色包_共22种–全平台可用

【matlab教程】matlab不规则区域的外围填充

【海洋科普】沉积物分为粘性沉积物和非粘性沉积物

【海洋科普】黄渤海地理介绍

【科普知识】海洋尺度图和解释

【海洋科普】海洋环流与等高线岩特征联系

代码分享:

# -*- coding: utf-8 -*-"""# Importing related function packages"""
import codecsimport cartopy.crs as ccrs
import matplotlib.ticker as mticker
import cartopy.feature as feature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from matplotlib.colors import ListedColormap
from matplotlib.patches import PathPatch
from matplotlib.path import Path
from matplotlib.transforms import TransformedBbox
from mpl_toolkits.axes_grid1.inset_locator import BboxConnector, BboxPatch
from netCDF4 import Dataset
from pylab import *
from palettable.colorbrewer.sequential import GnBu_9
import matplotlib.pyplot as plt# colormap颜色的倒置
def reverse_colourmap(cmap, name='my_cmap_r'):reverse = []k = []for key in cmap._segmentdata:k.append(key)channel = cmap._segmentdata[key]data = []for t in channel:data.append((1 - t[0], t[2], t[1]))reverse.append(sorted(data))LinearL = dict(zip(k, reverse))my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)return my_cmap_r# 子图连线函数
def mark_inset(parent_axes, inset_axes, loc1a, loc1b, loc2a, loc2b, **kwargs):rect = TransformedBbox(inset_axes.viewLim, parent_axes.transData)pp = BboxPatch(rect, fill=False, **kwargs)parent_axes.add_patch(pp)p1 = BboxConnector(inset_axes.bbox, rect, loc1=loc1a, loc2=loc1b, **kwargs)inset_axes.add_patch(p1)p1.set_clip_on(False)p2 = BboxConnector(inset_axes.bbox, rect, loc1=loc2a, loc2=loc2b, **kwargs)inset_axes.add_patch(p2)p2.set_clip_on(False)return pp, p1, p2"""read——my_color"""
# ----01----读取颜色--后续使用-high light red
filename = 'D:\matlab_work\函数名为colormore的颜色索引表制作\R_color_txt\R_color_single\\red1.txt'
file = open(filename, 'r')
lines = file.readlines()
file.close()
data1 = []
for line in lines:data1.append(float(line.strip()))
red = np.array(data1)
#   ---01--01----shallow ----gray----
filename = 'D:\matlab_work\函数名为colormore的颜色索引表制作\R_color_txt\R_color_single\\gray40.txt'
file = open(filename, 'r')
lines = file.readlines()
file.close()
data1 = []
for line in lines:data1.append(float(line.strip()))
gray = np.array(data1)
#   ---01--02----shallow ----gray----
filename = 'D:\matlab_work\函数名为colormore的颜色索引表制作\R_color_txt\R_color_single\\gray90.txt'
file = open(filename, 'r')
lines = file.readlines()
file.close()
data1 = []
for line in lines:data1.append(float(line.strip()))
gray90 = np.array(data1)
#   ---01--02----shallow ----gray----
filename = 'D:\matlab_work\函数名为colormore的颜色索引表制作\R_color_txt\R_color_single\\gray0.txt'
file = open(filename, 'r')
lines = file.readlines()
file.close()
data1 = []
for line in lines:data1.append(float(line.strip()))
gray0 = np.array(data1)
# ---02---自带--colormap
cmap1 = GnBu_9.mpl_colormap
cmap1_r1 = reverse_colourmap(cmap1)
# ----03--自己的----
# ---rear_my_color  65-53-56-49-55-
f = codecs.open("D:\matlab_work\函数名为colormore的颜色索引表制作\colormore_txt\\colormore_68.txt", mode='r')  # 打开txt文件
color_1, color_2, color_3 = [], [], []
for line in f.readlines()[0:]:a = line.split()a = [float(i) for i in a]color_1.append(a[0])color_2.append(a[1])color_3.append(a[2])
line = f.readline()
f.close()
colo = np.stack((color_1, color_2, color_3), 0)
color = np.transpose(colo)
color=np.flip(color, axis=0)
# 将rgb信息映射为colormap
colormap1 = ListedColormap(color)
#----cmocean--topo---
# ---rear_my_color
f = codecs.open("D:\matlab_work\函数名为colormore的颜色索引表制作\cmocean_txt\\topo.txt", mode='r')  # 打开txt文件
color_1, color_2, color_3 = [], [], []
for line in f.readlines()[0:]:a = line.split()a = [float(i) for i in a]color_1.append(a[0])color_2.append(a[1])color_3.append(a[2])
line = f.readline()
f.close()
colo = np.stack((color_1, color_2, color_3), 0)
color = np.transpose(colo)
# 将rgb信息映射为colormap
colormap2 = ListedColormap(color)
"""ax1的框"""
vertices = []
codes = []
codes = [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY]
vertices = [(100, 0), (100, 45), (135, 45), (135, 0), (100, 0)]
# vertices = [(-80, 0), (-80, 45), (-45, 45), (-45, 0), (-80, 0)]
vertices = np.array(vertices, float)
path = Path(vertices, codes)
pathpatch = PathPatch(path, facecolor='none', edgecolor=red / 256, lw=1)
"""读取地形数据"""
a = Dataset('D:\pycharm_work\data\etopo2.nc')
lon = a.variables['lon'][:]
lat = a.variables['lat'][:]
ele = a.variables['topo'][:]
# scs and east sea of China range is lon from 100 to 130;lat from 0 to 45;
ln1 = np.where(lon >= 100)[0][0]
ln2 = np.where(lon >= 135)[0][0]
la1 = np.where(lat >= 0)[0][0]
la2 = np.where(lat >= 45)[0][0]
# # # 画图网格
lon1 = lon[ln1:ln2]
lat1 = lat[la1:la2]
X, Y = np.meshgrid(lon1, lat1)
ele_aim = ele[la1:la2, ln1:ln2]
"""# 设置地图全局属性"""
plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
fig = plt.figure(dpi=300, figsize=(3.5, 2), facecolor='w', edgecolor='w')  # 设置一个画板,将其返还给fig
"""左图--big area"""
ax = fig.add_axes([0.05, 0.05, 0.4, 0.95], projection=ccrs.PlateCarree())
ax.set_extent([0, 180, -90, 90], crs=ccrs.PlateCarree())  # 设置显示范围
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.05, edgecolor=gray90/256)  # 添加海岸线:关键字lw设置线宽;lifestyle设置线型
ax.add_feature(feature.OCEAN)
ax.stock_img()  # 添加地球背景
# ---tick set--
ax.set_xticks(np.arange(0, 181, 30), crs=ccrs.PlateCarree())
ax.set_yticks(np.arange(-90, 91, 30), crs=ccrs.PlateCarree())
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.set_xticks(np.arange(0, 181, 30), crs=ccrs.PlateCarree(), minor=True)
ax.set_yticks(np.arange(-90, 91, 30), crs=ccrs.PlateCarree(), minor=True)
ax.tick_params(labelcolor=gray0/256, length=2, tickdir='in', labelsize=3)
ax.add_patch(pathpatch)
"""右图--放大图"""
ax2 = fig.add_axes([0.5, 0.05, 0.4, 0.9], projection=ccrs.PlateCarree())
ax2.set_extent([100, 135, 0, 45], crs=ccrs.PlateCarree())  # 设置显示范围
cs = ax2.contourf(X, Y, ele_aim, levels=np.arange(-5000, 5000, 33), extend='both', cmap=colormap1,transform=ccrs.PlateCarree())
cf = ax2.contour(lon, lat, ele[:, :], levels=[-3000, -1000], colors='k', linestyles='-',linewidths=0.2, transform=ccrs.PlateCarree())
ax2.add_feature(feature.COASTLINE.with_scale('10m'), lw=0.5, edgecolor=gray0/256)  # 添加海岸线:关键字lw设置线宽;lifestyle设置线型
# ---tick set--
ax2.set_xticks(np.arange(100, 136, 5), crs=ccrs.PlateCarree())
ax2.set_yticks(np.arange(0, 46, 5), crs=ccrs.PlateCarree())
ax2.xaxis.set_major_formatter(LongitudeFormatter())
ax2.yaxis.set_major_formatter(LatitudeFormatter())
ax2.set_xticks(np.arange(100, 136, 5), crs=ccrs.PlateCarree(), minor=True)
ax2.set_yticks(np.arange(0, 46, 5), crs=ccrs.PlateCarree(), minor=True)
ax2.tick_params(labelcolor=gray0/256, length=2, tickdir='in', labelsize=3)
# 左右两个字图连线 来源:https://mp.weixin.qq.com/s/2HE0pYIui96rp5wpgzGC8w
mark_inset(ax, ax2, loc1a=2, loc1b=1, loc2a=3, loc2b=4, fc='none', ec=red / 256, lw=0.5)
# ------colorbar设置
norm = mpl.colors.Normalize(vmin=-5000, vmax=5000)
position = plt.axes([0.91, 0.05, 0.03, 0.9])
cbar = fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=colormap1), cax=position, extend='both', shrink=0.2,label='depth(m)',ticks=np.linspace(-5000, 5000, 11), orientation='vertical')
# cbar.minorticks_on()#小刻度
cbar.ax.tick_params(length=2, labelsize='4', direction='in')
plt.savefig('study_area_sketch_map_046.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
plt.show()

在这里插入图片描述

这篇关于【python海洋专题四十六】研究区域示意放大图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/391184

相关文章

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚